4 research outputs found

    Remodeling of the fission yeast Cdc42 cell polarity module via the Sty1 p38 stress-activated protein kinase pathway

    Get PDF
    The Rho family GTPase Cdc42 is a key regulator of eukaryotic cellular organization and cell polarity [1]. In the fission yeast Schizosaccharomyces pombe, active Cdc42 and associated effectors and regulators (the "Cdc42 polarity module") coordinate polarized growth at cell tips by controlling the actin cytoskeleton and exocytosis [2-4]. Localization of the Cdc42 polarity module to cell tips is thus critical for its function. Here we show that the fission yeast stress-activated protein kinase Sty1, a homolog of mammalian p38 MAP kinase, regulates localization of the Cdc42 polarity module. In wild-type cells, treatment with latrunculin A, a drug that leads to actin depolymerization, induces dispersal of the Cdc42 module from cell tips and cessation of polarized growth [5, 6]. We show that latrunculin A treatment also activates the Sty1 MAP kinase pathway and, strikingly, we find that loss of Sty1 MAP kinase signaling prevents latrunculin A-induced dispersal of the Cdc42 module, allowing polarized growth even in complete absence of the actin cytoskeleton. Regulation of the Cdc42 module by Sty1 is independent of Sty1's role in stress-induced gene expression. We also describe a system for activation of Sty1 kinase "on demand" in the absence of any external stress, and use this to show that Sty1 activation alone is sufficient to disperse the Cdc42 module from cell tips in otherwise unperturbed cells. During nitrogen-starvation-induced quiescence, inhibition of Sty1 converts non-growing, depolarized cells into growing, polarized cells. Our results place MAP kinase Sty1 as an important physiological regulator of the Cdc42 polarity module

    The proteasome controls ESCRT-III–mediated cell division in an archaeon

    Get PDF
    INTRODUCTION: Eukaryotes likely arose from a symbiotic partnership between an archaeal host and an alpha-proteobacterium, giving rise to the cell body and the mitochondria, respectively. Because of this, a number of proteins controlling key events in the eukaryotic cell division cycle have their origins in archaea. These include ESCRT-III proteins, which catalyze the final step of cytokinesis in many eukaryotes and in the archaeon Sulfolobus acidocaldarius. However, to date, no archaeon has been found that harbors homologs of cell cycle regulators, like cyclin-dependent kinases and cyclins, which order events in the cell cycle across all eukaryotes. Thus, it remains uncertain how key events in the archaeal cell cycle, including division, are regulated. RATIONALE: An exception to this is the 20S proteasome, which is conserved between archaea and eukaryotes and which regulates the eukaryotic cell cycle through the degradation of cyclins. To explore the function of the 20S proteasome in the archaeon S. acidocaldarius, we determined its structure by crystallography and carried out in vitro biochemical analyses of its activity with and without inhibition. The impact of proteasome inhibition on cell division and cell cycle progression was examined in vivo by flow cytometry and super-resolution microscopy. Following up with mass spectrometry, we identified proteins degraded by the proteasome during division. Finally, we used molecular dynamics simulations to model the mechanics of this process. RESULTS: Here, we present a structure of the 20S proteasome of S. acidocaldarius to a resolution of 3.7 Å, which we used to model its sensitivity to the eukaryotic inhibitor bortezomib. When this inhibitor was added to synchronous cultures, it was found to arrest cells mid-division, with a stable ESCRT-III division ring positioned at the cell center between the two separated and prereplicative nucleoids. Proteomics was then used to identify a single archaeal ESCRT-III homolog, CdvB, as a key target of the proteasome that must be degraded to enable division to proceed. Examining the localization patterns of CdvB and two other archaeal ESCRT-III homologs, CdvB1 and CdvB2, by flow cytometry and super-resolution microscopy revealed the sequence of events that leads to division. First, a CdvB ring is assembled. This CdvB ring then templates the assembly of the contractile ESCRT-III homologs, CdvB1 and CdvB2, to form a composite division ring. Cell division is then triggered by proteasome-mediated degradation of CdvB, which allows the CdvB1:CdvB2 copolymer to constrict, pulling the membrane with it. During constriction, the CdvB1:CdvB2 copolymer is disassembled, thus vacating the membrane neck to drive abscission, yielding two daughter cells with diffuse CdvB1 and CdvB2. CONCLUSION: This study reveals a role for the proteasome in driving structural changes in a composite ESCRT-III copolymer, enabling the stepwise assembly, disassembly, and contraction of an ESCRT-III–based division ring. Although it is not yet clear how proteasomal inhibition prevents S. acidocaldarius cells from resetting the cell cycle to initiate the next S phase, these data strengthen the case for the eukaryotic cell cycle regulation having its origins in archaea
    corecore