587 research outputs found

    Applications of Frobenius Algebras to Representation Theory of Schur Algebras

    Get PDF
    AbstractA Schur algebra is a subalgebra of the group algebraRGassociated to a partition ofG, whereGis a finite group andRis a commutative ring. For two classes of Schur algebras we study the relationship between indecomposable modules over the Schur algebra and overRG, but we discuss this problem in a more general context. Further we develop a character theory for Schur algebras; in particular, we express primitive central idempotents in terms of trace functions and we derive orthogonality relations for trace functions. These results are also presented in a more general context, namely for Frobenius algebras over rings. Moreover, we focus on class functions on Schur algebras

    RBF neural net based classifier for the AIRIX accelerator fault diagnosis

    Get PDF
    The AIRIX facility is a high current linear accelerator (2-3.5kA) used for flash-radiography at the CEA of Moronvilliers France. The general background of this study is the diagnosis and the predictive maintenance of AIRIX. We will present a tool for fault diagnosis and monitoring based on pattern recognition using artificial neural network. Parameters extracted from the signals recorded on each shot are used to define a vector to be classified. The principal component analysis permits us to select the most pertinent information and reduce the redundancy. A three layer Radial Basis Function (RBF) neural network is used to classify the states of the accelerator. We initialize the network by applying an unsupervised fuzzy technique to the training base. This allows us to determine the number of clusters and real classes, which define the number of cells on the hidden and output layers of the network. The weights between the hidden and the output layers, realising the non-convex union of the clusters, are determined by a least square method. Membership and ambiguity rejection enable the network to learn unknown failures, and to monitor accelerator operations to predict future failures. We will present the first results obtained on the injector.Comment: 3 pages, 4 figures, LINAC'2000 conferenc

    Average characteristic polynomials in the two-matrix model

    Full text link
    The two-matrix model is defined on pairs of Hermitian matrices (M1,M2)(M_1,M_2) of size n×nn\times n by the probability measure 1Znexp(Tr(V(M1)W(M2)+τM1M2)) dM1 dM2,\frac{1}{Z_n} \exp\left(\textrm{Tr} (-V(M_1)-W(M_2)+\tau M_1M_2)\right)\ dM_1\ dM_2, where VV and WW are given potential functions and \tau\in\er. We study averages of products and ratios of characteristic polynomials in the two-matrix model, where both matrices M1M_1 and M2M_2 may appear in a combined way in both numerator and denominator. We obtain determinantal expressions for such averages. The determinants are constructed from several building blocks: the biorthogonal polynomials pn(x)p_n(x) and qn(y)q_n(y) associated to the two-matrix model; certain transformed functions n(w)\P_n(w) and \Q_n(v); and finally Cauchy-type transforms of the four Eynard-Mehta kernels K1,1K_{1,1}, K1,2K_{1,2}, K2,1K_{2,1} and K2,2K_{2,2}. In this way we generalize known results for the 11-matrix model. Our results also imply a new proof of the Eynard-Mehta theorem for correlation functions in the two-matrix model, and they lead to a generating function for averages of products of traces.Comment: 28 pages, references adde

    Non-colliding Brownian Motions and the extended tacnode process

    Full text link
    We consider non-colliding Brownian motions with two starting points and two endpoints. The points are chosen so that the two groups of Brownian motions just touch each other, a situation that is referred to as a tacnode. The extended kernel for the determinantal point process at the tacnode point is computed using new methods and given in a different form from that obtained for a single time in previous work by Delvaux, Kuijlaars and Zhang. The form of the extended kernel is also different from that obtained for the extended tacnode kernel in another model by Adler, Ferrari and van Moerbeke. We also obtain the correlation kernel for a finite number of non-colliding Brownian motions starting at two points and ending at arbitrary points.Comment: 38 pages. In the revised version a few arguments have been expanded and many typos correcte

    The influence of microgravity on invasive growth in Saccharomyces cerevisiae

    Get PDF
    This study investigates the effects of microgravity on colony growth and the morphological transition from single cells to short invasive filaments in the model eukaryotic organism Saccharomyces cerevisiae. Two-dimensional spreading of the yeast colonies grown on semi-solid agar medium was reduced under microgravity in the Sigma 1278b laboratory strain but not in the CMBSESA1 industrial strain. This was supported by the Sigma 1278b proteome map under microgravity conditions, which revealed upregulation of proteins linked to anaerobic conditions. The Sigma 1278b strain showed a reduced invasive growth in the center of the yeast colony. Bud scar distribution was slightly affected, with a switch toward more random budding. Together, microgravity conditions disturb spatially programmed budding patterns and generate strain-dependent growth differences in yeast colonies on semi-solid medium

    Non-intersecting squared Bessel paths at a hard-edge tacnode

    Full text link
    The squared Bessel process is a 1-dimensional diffusion process related to the squared norm of a higher dimensional Brownian motion. We study a model of nn non-intersecting squared Bessel paths, with all paths starting at the same point a>0a>0 at time t=0t=0 and ending at the same point b>0b>0 at time t=1t=1. Our interest lies in the critical regime ab=1/4ab=1/4, for which the paths are tangent to the hard edge at the origin at a critical time t(0,1)t^*\in (0,1). The critical behavior of the paths for nn\to\infty is studied in a scaling limit with time t=t+O(n1/3)t=t^*+O(n^{-1/3}) and temperature T=1+O(n2/3)T=1+O(n^{-2/3}). This leads to a critical correlation kernel that is defined via a new Riemann-Hilbert problem of size 4×44\times 4. The Riemann-Hilbert problem gives rise to a new Lax pair representation for the Hastings-McLeod solution to the inhomogeneous Painlev\'e II equation q"(x)=xq(x)+2q3(x)ν,q"(x) = xq(x)+2q^3(x)-\nu, where ν=α+1/2\nu=\alpha+1/2 with α>1\alpha>-1 the parameter of the squared Bessel process. These results extend our recent work with Kuijlaars and Zhang \cite{DKZ} for the homogeneous case ν=0\nu = 0.Comment: 54 pages, 13 figures. Corrected error in Theorem 2.
    corecore