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A Schur algebra is a subalgebra of the group algebra RG associated to a
partition of G, where G is a finite group and R is a commutative ring. For two
classes of Schur algebras we study the relationship between indecomposable
modules over the Schur algebra and over RG, but we discuss this problem in a
more general context. Further we develop a character theory for Schur algebras; in
particular, we express primitive central idempotents in terms of trace functions and
we derive orthogonality relations for trace functions. These results are also
presented in a more general context, namely for Frobenius algebras over rings.
Moreover, we focus on class functions on Schur algebras. Q 1998 Academic Press

INTRODUCTION

A Schur algebra is a subalgebra of the group algebra RG associated to a
partition of G, where G is a finite group and R is a commutative ring, see
Definition 1.1. Schur algebras over C were introduced by Schur and

w x w x w xWielandt 14 , and were first studied by Tamaschke 13 and Roesler 11 .
In Section 2 we study indecomposable modules for two important classes

Žof Schur algebras: double coset algebras and their generalizations, see
.Proposition 2.7 and fixed rings of certain automorphism groups. Double

coset algebras are studied in the more general situation of Hecke algebras:
if A is an R-algebra and « a nonzero idempotent of A, then « A« is
called a Hecke in A. We investigate the relationship between indecompos-
able modules over « A« and indecomposable modules over A, and we
determine the primitive central idempotents of « A« in terms of the
idempotents of A, see Proposition 2.4 and Theorem 2.5. In particular, we
prove that a connected ring R is a splitting ring for « A« whenever it is a
splitting ring for A.
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Furthermore, we study the relationship between indecomposable mod-
ules over an R-algebra A and indecomposable modules over the fixed ring

H Ž .A , which is associated to a group homomorphism s : H ª Aut A , seeR
Theorem 2.15 and Corollary 2.16. These results can be applied to the
situation where A is the group algebra RG and s is derived from a group

Ž . Hhomomorphism H ª Aut G , and in this case A is a Schur algebra. In
the special case where H is a subgroup of G and s , h g H, is an innerh
automorphism, the fixed ring coincides with the centralizer of RH in RG,

w xand in 10, 3 we obtained more relations between indecomposable mod-
ules over RH, RG, and RG H.

In Section 3 we develop a character theory for Schur algebras. We show
Ž .that Schur algebras are Frobenius algebras under a suitable condition .

Therefore we set up this problem in the more general context of Frobenius
algebras over commutative rings. First we collect some generalities on
Frobenius algebras, including a criterion for separability. We then study
symmetric functions on Frobenius R-algebras and we show that, under
certain conditions, they are generated over R by trace functions. We
express primitive central idempotents of a Frobenius algebra A in terms of
trace functions and we derive orthogonality relations for trace functions on
A, see Theorem 3.10 and Proposition 3.12.

In the case of Schur algebras we introduce class functions and we
investigate when the set of class functions coincides with the set of
symmetric functions. In fact, this latter study yields an analysis of the
center of a Schur algebra. To conclude we calculate the trace function of

Ž .induced modules between two Schur algebras Section 5 .
Throughout this paper rings are assumed to have a unit element and

modules are unitary:

1. PRELIMINARIES

Throughout R is a commutative ring. A ring is said to be connected if 0
and 1 are the only idempotent elements. We begin with some useful facts
about indecomposable modules.

Let A be an R-algebra and suppose that R is connected. We first
remark that a left A-module, which is finitely generated and projective

Žover R, is a finite direct sum of indecomposable left A-modules use
.rank . Now assume that A is finitely generated and projective as anR

R-module. Then there exist primitive central orthogonal nonzero idempo-
Ž .tents e , . . . , e in A such that 1 s e q ??? qe use rank . Moreover,1 q 1 q R

each central nonzero idempotent of A is uniquely a sum of some e . If Mi
is an indecomposable left A-module, then there is a unique i such that
e M / 0 and we say that M lies over e . Further, if any two indecompos-i i
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able finitely generated projective left A-modules lying over the same ei

are isomorphic as A-modules, then it is easily seen that any finitely
generated projective left A-module is uniquely expressible as a finite

Ž .direct sum of indecomposable left A-modules up to isomorphism . The
same remark holds if we replace projectivity over A by projectivity over R.

In addition, suppose that A is a separable R-algebra. Then a left
A-module is projective as an R-module if and only if it is projective as an

w xA-module, cf. 5, p. 48 . Furthermore, if R is semilocal, then any two
indecomposable finitely generated projective left A-modules lying over the
same primitive central idempotent of A are isomorphic as A-modules, see
w x4, Theorem 1; 10, Note 3.4 . Note also that a separable R-algebra, where
R is a field, is semisimple.

ŽWe now assume that R is a splitting ring for A or A is split separable
. Ž . Ž .over R ; that is, A ( End M [ ??? [ End M as R-algebras,R 1 R q

M , . . . , M being finitely generated projective faithful R-modules. Recall1 q

that finitely generated projective nonzero modules over connected commu-
w xtative rings are always faithful, see 5, p. 8 . Note also that the center of A

is a free R-module of rank q. Obviously M can be viewed as a lefti
Ž . Ž .A-module by setting w , . . . , w .m s w m , where m g M and w g1 q i i j

Ž .End M . Since R is connected, each M is an indecomposable leftR j i

A-module, and they are not isomorphic as such. Now assume that M liesi

over the primitive central idempotent e of A. If finitely generatedi

projective R-modules are free, for example, when R is semilocal or a
principal ideal domain, then M is, up to isomorphism, the only indecom-i

Žposable finitely generated projective left A-module lying over e seei
w x.9, 18 . Note also that any semisimple C-algebra is split separable over C.

Next, we recall some basic facts about trace functions. Let A be an
R-algebra and V a left A-module which is finitely generated and projective

� 4 � 4 Ž .over R. Let ¨ , . . . , ¨ ; V, w , . . . , w ; Hom V, R be an R-dual1 n 1 n R
Ž .basis for V. The trace function or character from A to R afforded by V,

Ž . n Ž .notation t , is defined as t a s Ý w a¨ , for all a g A. It is easilyV V is1 i i

seen that t does not depend on the choice of the dual basis. Further,V
Ž . Ž . Ž .t xy s t yx for all x, y g A, and if R is connected, then t 1 sV V V

Ž . w xrank V 1 ; see 9, 2.5 .R R

To conclude this subsection, let us focus on group rings. Let G be a
finite group and consider the group ring RG. As R-module, RG will be

� 4 < <y1freely generated by symbols u ; g g G . Recall that in case G g R,g
< <y1RG is separable over R. Further, suppose R is connected and G g R.

Let m be the exponent of G and let h be a primitive mth root of unity.
w x w xThen L s R h is a splitting ring for LG, see 12 .

We now turn to Schur algebras in RG.
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� 4 Ž .1.1. DEFINITION. Let G be a finite group and let E ; g g G g g Eg g
be a partition of G such that Ey1 s E y1 . Denote by G a set ofg g 0
representatives of the distinct E . Now let R be a commutative ring andg
put s s Ý u in RG. If S s [ Rs is a subalgebra of RG withg x g E x g g G gg 0

unit element 1 , then S is said to be a Schur algebra in RG.S

Ž .1.2. Remarks. 1 Keep the notation of Definition 1.1 and suppose
that S s [ Rs is a subalgebra of RG with unit element. Then theg g G g0

following statement need not hold:

;g , h g G, E E s E for some k g G. )Ž .Dg h k
k

Ž . Ž .However, if char R s 0, then property ) follows from the ring structure
Ž .of S. We also remark that property ) holds for the Schur algebras

considered in Section 2.
Ž . Ž .2 An example of a Schur algebra for which property ) does not hold

w xis given in 1 . Namely, take R s Z , G s Z = Z and consider the2 3 3
�Ž . Ž . Ž . Ž . Ž .4 �Ž . Ž . Ž . Ž .4partition 0, 0 , 0, 1 , 0, 2 , 1, 0 , 2, 0 , 1, 1 , 2, 2 , 1, 2 , 2, 1 . Here,

s is the unit element.Ž0, 0.

� 4Of course, if E s e , then s s 1 . Furthermore:e e S

1.3. LEMMA. Let R, G, E , s be as in Definition 1.1.g g

Ž . Ž .1 Suppose for all g, h g G we ha¨e E E s D E some k g G .g h k k
< <Then E is a subgroup of G and s s s s s s E s for all g g G.e e g g e e g

Ž .2 Suppose that S s [ Rs is a subalgebra of RG with unitg g G g0
< < < < < <element 1 . Then E is in¨ertible in R. Moreo¨er, if E 1 / 0 and E 1S e g R g R

< <y1is not a zero dï isor in R for each g g G, then 1 s E s .S e e

Ž .Proof. 1 We shall prove that xE ; E for all x g E . But theng g e
< < < <equality must hold, because xE s E . Analogously E x s E , and theg g g g

assertions follow. Now take y g E and put h s xy. Then E E y1 l E /g h g e
B, and thus by our hypothesis E ; E E y1 . Therefore E s E .e h g h g

Ž .2 Write 1 s Ý r s with r g R, and let e g G . Then s sS g g G g g g 0 t0

Ý r s s for all t g G. Comparing coefficients of u , we obtaing g G g g t e0
< < < < � 41 s E r and 0 s E r for all g g G _ e . The result now follows.e e g g 0

We also mention the following elementary fact.

1.4. LEMMA. Let R, G be as abo¨e.

Ž . y11 The map u : RG ª RG: Ý r u ¬ Ý r u is an anti-g g G g g g g G g g
isomorphism and u (u s I.

Ž . Ž .2 If S is a Schur algebra in RG, then u S s S.
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Again, R is a commutative ring and G is a finite group. We may
consider the following componentwise multiplication on RG. Let a, a9 g
RG, a s Ý r u , and a9 s Ý rX u with r , rX g R. Then we defineg g G g g g g G g g g g
a) a9 s Ý r rX u . Note that RG, ) is a commutative R-algebra withg g G g g g
Ý u as unit element. Evidently, every Schur algebra in RG is closedg g G g
under this multiplication and contains Ý u . On the other hand, weg g G g
have:

1.5. PROPOSITION. Suppose R is a field.

Ž .1 Let S be an R-submodule of RG. If S is closed under the multiplica-
� 4tion ) and Ý u g S, then there is a partition E ; g g G of G suchg g G g g

that S s [ Rs , where s s Ý u and G denotes a set of represen-g g G g g x g E x 00 g

tatï es of the distinct E .g

Ž .2 Let S be an R-subalgebra of RG with unit element. If S satisfies the
Ž . Ž .conditions in 1 and u S ; S, then S is a Schur algebra in RG.

Ž .Proof. 1 We consider the R-algebra S, ). There exist orthogonal
primitive nonzero idempotents in S, ), say e , . . . , e , such that Ý u1 m g g G g

� 4s e q ??? qe . Clearly, u ; g g G is the set of primitive idempotents of1 m g
RG, ) and thus we have e s u q ??? qu and so on. By the above1 g g1 t

� 4remarks we obtain a partition of G, namely E s g , . . . , g , etc.g 1 t1

Next, the multiplication ) makes Ru into a left S-module. Sinceg
Ž .dim Ru s 1, Ru is a simple S-module. So RG is a semisimple leftR g g

S-module and thus S, ) is a semisimple ring. But then S) s ( Ru asg g
Ž . Ž .S-modules s s e . Consequently dim S) s s 1, and thus Rs ; S) sg 1 R g g g1

must be an equality.
Ž .2 Let u be as above. Clearly, u : RG, ) ª RG, ) is an isomor-

Ž . Ž .phism of R-algebras and u (u s I. Since u S ; S, it follows that u s sg
y1s is a primitive idempotent of S, ). This proves our assertion.g

1.6. Note. Let S be a Schur algebra in RG with associated partition
� 4 < <y1E ; g g G . Assume R is connected, G g R, and consider the idempo-g

< <y1 < <tent « s G Ý u . Clearly « g S and s « s E « s « s , with s sg g G g g g g g
Ý u . Now S« s R« is an indecomposable left S-module, and thus «x g E xg

is a primitive idempotent of S. Moreover « is an element of the center
Ž . < <of S. Furthermore, t s s E 1 .S« g g R

2. INDECOMPOSABLE MODULES OVER
SCHUR ALGEBRAS

Throughout, R is a commutative ring and G is a finite group. Our aim is
to investigate the relationship between indecomposable RG-modules and
indecomposable modules over certain Schur algebras.
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We begin with some results about double coset algebras. Let H be a
< <y1subgroup of G. Suppose that H g R and consider the idempotent

< <y1« s H Ý u in RG. Then « RG« is a Schur algebra, called a doublehg H h
ŽŽ . .coset algebra. Indeed, H = H acts on G as follows: h, k , g ¬

y1 Ž .y1 y1 < <hgk , h, k g H, g g G, and HgH s Hg H. Furthermore, HgH is
< <invertible in R and Ý u s HgH « u « .x g H g H x g

We shall discuss relations between RG and « RG« in a more general
context. Until further notice, A denotes an R-algebra and « a nonzero

Ž Ž ..o Ž .idempotent of A. Note that End A« ª « A« : c ¬ c « is an iso-A
morphism of R-algebras. Further, if A is finitely generated and projective

w xas R-module, then so is « A« . From 10, 4.1 we retain:

2.1. PROPOSITION. Suppose that A is finitely generated and projectï e as
ŽR-module and suppose that « A« is a faithful R-algebra this follows whene¨er

.R is connected . If A is separable o¨er R, then so is « A« .

< <In particular, if G is invertible in R, then every double coset algebra in
w xRG is separable over R. From 2, 6.3 we may deduce:

2.2. PROPOSITION. Let PP be the category of all finitely generated projec-
Ž .tï e left « A«-modules and let CC s CC A« be the category of all left A-mod-

Ž .mules which are isomorphic to A-direct summands of A« for some m. Then
Ž .the functors A« m y : PP ª CC and Hom A« , y : CC ª PP, denoted by« A« A

F resp. F , define an equï alence of categories between PP and CC. Conse-1 2
quently, indecomposable modules in PP correspond to indecomposable mod-
ules in CC under F and F .1 2

Ž . Ž .It is clear that Hom A« , M is a right End A« -module, hence it is aA A
Ž . Ž .left « A«-module M being a left A-module . Moreover, Hom A« , MA

Ž .ª « M: c ¬ c « is an isomorphism of left « A«-modules.
Ž .Further, if 0 / M g CC A« , then M is a finitely generated projective

left A-module and « M / 0. We now focus on central idempotents.

2.3. Remarks. Suppose that R is connected and that A is finitely
� 4 � 4generated and projective as R-module. Let e , . . . , e , resp. d , . . . , d ,1 q 1 m

be the set of primitive central nonzero idempotents of A, resp. « A« .

Ž .1 Each nonzero « e is uniquely expressible as a sum of d ’s andi j
each d appears in one and only one of the nonzero « e .j i

Ž . Ž .2 Let P g PP be indecomposable notation as in Proposition 2.2 .
Then A« m P lies over e if and only if « e / 0 and P lies over some« A« i i
d appearing in the decomposition of « e .j i

Ž .3 We may write d as a sum of orthogonal primitive nonzeroj
Ž .idempotents of « A« , say d s h q ??? qh use rank . It is clear thatj 1 k R

« A«h is an indecomposable module in PP lying over d .i j
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� 42.4. PROPOSITION. Let R, A, and e , . . . , e be as in Remarks 2.3.1 q
Suppose that any two indecomposable finitely generated projectï e left A-
modules lying o¨er the same e are isomorphic as A-modules, then:i

Ž .1 The nonzero « e are precisely the distinct primitï e central idempo-i
tents of « A« .

Ž .2 Any two indecomposable finitely generated projectï e left « A«-
modules lying o¨er the same nonzero « e are isomorphic as « A«-modules.i

Ž .3 Let M be an indecomposable finitely generated projectï e left A-
module lying o¨er e . Then « M / 0 if and only if « e / 0, and this isi i

Ž .equï alent to M g CC A« .

Proof. The result follows readily from Proposition 2.2 and Remarks 2.3.

� 42.5. THEOREM. Let R, A, and e , . . . , e be as in Remarks 2.3. Suppose1 q
Ž . Ž .A ( End M [ ??? [ End M as R-algebra, M being finitely generatedR 1 R q i

projectï e R-modules, and assume that M lies o¨er e . Then:i i

Ž .1 The nonzero « e are the primitï e central idempotents of « A« .i

Ž .2 « M / 0 if and only if « e / 0, and this is equï alent to M gi i i
Ž .CC A« .

Ž .3 Each nonzero « M is an indecomposable left « A«-module andi
Ž .« A« ( [ End « M as R-algebras, where the sum is taken o¨er thei R i

nonzero « M .i

Proof. Recall that each M is an indecomposable left A-module underi
Ž . Ž . Ž .the operation w , . . . , w ? m s w m , m g M , and w g End M .1 q i i j R j

It is easily seen that each nonzero « M is a finitely generated projectivei
R-module. Further, since A is separable over R, projectivity over R is
equivalent to projectivity over A. The same remark holds for « A« .

Ž .a Obviously « M / 0 yields « e / 0. Now assume « e / 0. Leti i i
� 4d , . . . , d be as in Remarks 2.3; then « e is a sum of d ’s. Consider an1 m i j
indecomposable module P g PP which lies over some d , appearing in thej

Ž .decomposition of « e . We know that Ae ( End M , and A« m P isi i R i « A«

a unitary left Ae -module. Therefore there is an R-module L such thati
Ž . w xA« m P ( L m M as left A or Ae -modules, see, e.g., 5, p. 19 .« A« R i i

Then P ( L m « M as left « A«-modules. Consequently, « M / 0 andR i i
d « M / 0.j i

Ž .b Assume « M / 0. We observe that « M g PP. Thus A« m « Mi i « A« i
Ž .g CC A« and it is a unitary left Ae -module. But then there is a finitelyi

generated projective R-module N such that A« m « M ( N m M as« A« i R i
Ž . w xleft A or Ae -modules, see, e.g., 5, p. 19 and 23 . As a consequence,i
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Ž .« M ( N m « M as left « A«-modules. This implies that rank « M si R i R i
Ž . Ž . Ž . Ž .rank N rank « M , whence rank N s 1. Therefore End N s RIR R i R R

w x( R, see, e.g., 5, p. 32 . Since we are dealing with equivalent categories,
Ž . Ž . Ž .we have End N m M ( End N and End A« m « M (A R i R A « A« i

Ž . w xEnd « M as R-algebras, see, e.g., 5, p. 17 . We conclude that« A« i
Ž .End « M s RI ( R. In particular, « M is an indecomposable left« A« i i

w x« A«-module, see 2, 6.4 .
Ž . Ž .c Since each nonzero « M is indecomposable, it follows from ai

that each nonzero « e is a primitive central idempotent of « A« . Leti
Ž . Ž .« M / 0. Since End « M s RI, we then obtain « A« e ( End « Mi « A« i i R i

w x Žas R-algebras, see 9, 1.7 the isomorphism associates to « a« e the lefti
.multiplication by « a« e . Now, N m « M ( « M ( R m « M as lefti R i i R i

Ž Ž ..« A«-modules, and thus N ( R N as in b . Consequently, M ( A« mi « A«

Ž .« M g CC A« , completing the proof.i

2.6 Remarks. Let M be a left A-module such that « M / 0. If M is
Ž .finitely generated projective over R, then so is « M and we have t « x«« M

Ž . Ž .s t « x« s t x« for all x g A. More details on trace functions mayM M
w xbe found in 3, Sect. 4 . The case where « is central is less complicated, see

w xalso 3, 4.8 and 4.9 . Finally, if A is semisimple, then « A« is semisimple
too, as is well known.

One may also apply the preceding results to the following situation.

2.7. PROPOSITION. Let S be a Schur algebra in RG with associated
� 4 < <y1partition E ; g g G . Let H be a subgroup of G such that H g R andg

< <y1 < <consider the idempotent « s H Ý u . If « g S and E 1 / 0 for allhg H h g R
� 4g g G, then «S« is a Schur algebra in RG with partition HE H; g g G .g

< <y2 < < < <Moreo¨er we ha¨e m H HE H 1 s E 1 with m g N.g R g R

Proof. Put s s Ý u and let G denote a set of representatives ofg x g E x 0g l < <y1the distinct E . Now let g g G . Clearly, « s « s Ý n Hx H Hx Hg 0 g is1 i i i
with n g N, where x g E are representatives of the distinct HxH,i i g

< <x g E , and Hx Hs Ý u . Note that n q ??? qn s E . So thereg i y g H x H y 1 l gi
< <is some n such that n 1 / 0, because E 1 / 0. Since « g S, we havei i R g R

Ž < <y2 .also « s « s Ý r s with r g R r s m H 1 with m g N .g t g G t t t t t R t0
< <y1Comparing these expressions for « s « , we obtain n Hx H 1 s r forg i i R g

i s 1, . . . , l, whence also r s r or r s 0. Moreover r / 0. Consequently,t g t g
« s « s r HE H with HE Hs Ý u . We also deduce that « s « sg g g g y g HE H y gg

r Ý s for some k g G , and we conclude that HE Hs Ý s . Thereforeg k k 0 g k k

HE Hg S l « RG« , and this intersection is equal to «S« .g

Next, the above discussion shows that for each g g G , HE H s D E0 g k k
for some k g G . Using this, it is easily seen that sets of the form HE H0 g

Ž .y1
y1coincide or are disjoint. Moreover HE H s HE H.g g
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< < < <y1Finally, since n q ??? qn s E and n Hx H 1 s r , we have1 l g i i R g
< < < <HE H r s E 1 , completing the proof.g g g R

2.8. Remark. Proposition 2.7 remains valid if we replace the condition
< <E 1 / 0 by the following condition: for any g, h g G, E E s D E forg R g h l l
some l g G. In this case, it follows at once from the hypotheses that
HE H s D E for some k g G.g k k

We now turn to Schur algebras which are fixed rings of automorphism
Ž .groups. Let G, H be finite groups and let s : H ª Aut G be a homomor-

� Ž . 4phism of groups. The orbits E s s g ¬ h g H , g g G, form a partitiong h
y1 � 4y1of G; E s E and E s e . Each s extends to an R-algebrag g e h

Ž . Ž .isomorphism of RG again denoted by s as follows: s Ý r u sh h g g g
Ž .S r u , with g g G and r g R. Furthermore, s : H ª Aut RG :g g s Ž g . g Rh

h ¬ s is a homomorphism of groups.h
H � Ž . 4Consider the fixed ring RG s a g RG ¬ ;h g H: s a s a ; we have:h

2.9. LEMMA. Keep the abo¨e notation, put s s Ý u in RG, and letg x g E xg

G denote a set of representatï es of the distinct E . Then RG H s [ Rs ,0 g g g G g0

i.e., RG H is a Schur algebra in RG.

Proof. Clearly s g RG H. Conversely, let Ý r u g RG H, r g R.g g g G g g g
Then for each h g H we have Ý r u s Ý r u , whenceg g G g g g g G g s Ž g .h

Ž .r s r for nonzero r . The result follows at once.s Ž g . g gh

We recall a few facts about fixed rings of automorphism groups.
Ž .Throughout A is an R-algebra, H a finite group, and s : H ª Aut A aR

homomorphism of groups.
Ž . � Ž . 4For any a g A, denote by O a the orbit s a ¬ h g H and seth

Ž . H � Ž . 4s a s Ý x. Clearly, A s a g A ¬ ;h g H: s a s a is an R-sub-x g OŽa. h
Ž . Halgebra of A containing 1 . Moreover, for any a g A we have s a g AA

Ž . Has well as Ý s a g A . Further, the associated skew group ring ishg H h
denoted by A) H. As a left A-module A) H is freely generated by

� 4 Ž . Ž .symbols w ¬ h g H and multiplication is defined by aw ? bw sh h k
Ž .as b w for all a, b g A, h, k g H. Of course A) H is also an R-h hk

algebra, where the R-module structure is inherited from A.
< <y1 < <y1If H g R, then we may consider the idempotent e s H Ý wH hg H h

w xin A) H. From 7, Lemma 2.1 we retain:

< <y1 Ž . H2.10. LEMMA. Assume H g R. Then e A) H e s A e , andH H H
AHe is isomorphic to AH as R-algebra.H

Ž .Proof. Set « s e , and observe that aw ¨ s a¨ for all a g A, ¨ gH e
A) H.

Ž . < <y1 Ž .For a g A and k g H we have « aw s H Ý s a w . Butk hg H h hk
Ž . < <y1 Ž .w « s « . Therefore « aw « s H Ý s a « , and this shows thatt k hg H h
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Ž . H < <y1 Ž .« A) H « ; A « . On the other hand, a s H Ý s a for all a ghg H h
AH, and the equality follows.

Using the expressions given above, it is easily verified that AH ª AH« :
a ¬ a« is an isomorphism of R-algebras.

We may use the preceding lemma to prove:

< <y12.11. PROPOSITION. Let A, H, s be as before and assume H g R.

Ž . H1 If A is finitely generated and projectï e as R-module, then so is A .
Ž .2 Suppose that A is finitely generated projectï e and faithful as R-

module. If A is separable o¨er R, then so is AH.

Ž . � 4 � 4 Ž .Proof. 1 Let a , . . . , a ; A, w , . . . , w ; Hom A, R be a dual1 n 1 n R
� < <y1 Ž .4 � 4Hbasis for A. Then it is easily checked that H Ý s a , w ¬ is ahg H h i i A

dual basis for AH.
Ž . m 02 Let Ý x m y g A m A be a separability idempotent for A.is1 i i R

< <y1 m Ž Ž . .y1Then it is easily verified that H Ý Ý s x w m y w is ahg H is1 h i h i h
separability idempotent for A) H. So A) H is separable over R. More-
over, A) H is finitely generated projective as R-module. We now apply
Lemma 2.10 and Proposition 2.1.

Let us return to the case where A s RG and H acts on G. Then A) H
Ž .is isomorphic to R G = H as R-algebra, where G = H is the semidi-s s

Ž Ž . Ž . Ž Ž . .rect product of G and H i.e., g , h ? g , h s g s g , h h for1 1 2 2 1 h 2 1 21
. Ž .g g G, h g H . The isomorphism maps u w g A) H onto g, h for anyi i g h

g g G, h g H.
< <y1 HIn case H g R, the algebra RG is isomorphic to a double coset
Ž .algebra in R G = H , see Lemma 2.10. Furthermore we have:s

Ž . < < < < H2.12. PROPOSITION. 1 If H and G are in¨ertible in R, then RG is
separable o¨er R.

Ž . < < < <2 Suppose R is connected, and H and G are in¨ertible in R. If R is
Ž . Ha splitting ring for R G = H , then R is a splitting ring for RG .s

In particular, let m be the exponent of G = H and h a primitï e mth roots

w x Hof unity. Then L s R h is a splitting ring for LG .

Ž . < <y1Proof. 1 We know that G g R implies that RG is separable over
Ž .R, and we may apply Proposition 2.11 2 .

Ž .2 The first statement follows from Lemma 2.10 and Proposition
Ž . w x2.5 3 . The second part follows from 12 .

Next we deal with indecomposable modules. Connections between
H Ž .RG -modules and R G = H -modules are given by the theory of doubles

coset algebras, developed in the first part of this section. We now investi-
gate the relationship between indecomposable RG H-modules and inde-
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composable RG-modules. We return to the general situation where A is
Ž .an R-algebra, H a finite group, and s : H ª Aut A a homomorphismR

of groups. We require the following definition.

2.13. DEFINITION. Let M be a left A-module and let h g H. We
obtain a left A-module hM as follows: consider the underlying abelian

y1Ž .group of M and let A act on it by setting a( m s s a m for all a g A,h
m g M.

Observe that the induced R-module structure on hM coincides with that
on M.

Ž .2.14. Remarks. 1 Let M, N be left A-modules and let h, k g H.
kŽh . k h Žh h . Ž .Then M s M as A-modules, and Hom M, N s Hom M, N .A A

Ž .2 Let M be a left A-module which is finitely generated and
Ž . Ž y1Ž ..projective over R. For the trace functions we get t a s t s a forh M hM

all a g A, h g H.
Ž .3 If M is an indecomposable, resp. a finitely generated projective,

left A-module, then so is hM for all h g H.
Ž .4 Suppose that R is connected and that A is finitely generated and

� 4 � 4projective as R-module. Let e , . . . , e , resp. d , . . . , d , be the set of1 q 1 m
H Ž .primitive central nonzero idempotents of A, resp. A use rank . ThenR

� 4 Ž .H acts on e , . . . , e by s . Again, let s e denote the sum of the1 q i
Ž .idempotents in the orbit of e . Each s e is uniquely expressible as a sumi i

Ž .of d ’s, and each d appears in one and only one of the s e . Note alsoj j i
Ž .that d appears in s e if and only if d e / 0.j i j i

Ž . Ž .5 Let R, A, e , d be as in 4 , and let M be an indecomposablei j
h Ž .left A-module lying over e . We observe that M lies over s e , h g H.i h i

Further, it is clear that d e s 0 implies d M s 0. Moreover, if M isj i j
finitely generated projective over A and if any two indecomposable finitely
generated projective left A-modules lying over the same primitive central
idempotent are isomorphic as A-modules, then the converse is true.
Indeed, suppose d M s 0 and write e s h q ??? qh , h being primitivej i 1 t k
idempotents of A. Then d Ah s 0 for k s 1, . . . , t, whence d e s 0.j k j i

< HNote also that M is the direct sum of the nonzero d M.A j

2.15. THEOREM. Suppose that R is connected and that A is finitely
generated and projectï e as R-module. Let P be an indecomposable left
AH-module, and let e be a primitï e central idempotent of A such that
Ž . Ž . � Ž . 4H He A m P / 0. Set W s e A m P and F s h g H ¬ s e s e . ThenA A h

Ž . r h i � 4H1 A m P ( [ W as left A-modules, where h , . . . , h is a setA is1 1 r
of left coset representatï es of F in H.

� h 4Moreo¨er, F s h g H ¬ W ( W as A-modules .
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Ž . H2 If P is finitely generated and projectï e o¨er A , then we may write
A m H P s M [ ??? [ M where each M is an indecomposable left A-A 1 s i
module. In this case W is the direct sum of all M lying o¨er e.i

Ž . � 4Proof. 1 Let e s e , . . . , e be the set of all primitive central idem-1 t
Ž . Ž .H Hpotents of A for which e A m P / 0, and set W s e A m P . Thenj A j j A
Ž .HA m P s W [ ??? [ W W s W .A 1 t 1

Further, let d denote the primitive central idempotent of AH for which
Ž . Ž .HdP / 0. Then e A m P / 0 implies e d / 0. By Remark 2.14 4 , itj A j

Ž .follows that e , . . . , e belong to the same orbit of the action of H .1 t
hŽ .H HNow let h g H. We observe that A m P ª A m P : Ý a m p ¬A A i i i

y1Ž . Ž .Ž .HÝ s a m p is an isomorphism of left A-modules. Thus s e A m Pi h i i h A
Ž . hŽ . h Ž .H( s e ( A m P s W / 0 as A-modules. This yields s e s e forh A h j

� 4some j g 1, . . . , t .
h Ž . hMoreover we obtain W ( W. Furthermore, if s e s e, then W ( W.j h

Ž . h hThe converse follows from the fact that eW s W and s e ( W s W.h

Ž . H2 It is clear that A m P is nonzero, finitely generated, andA
projective over A, hence also over R, and use rank .R

Ž .H HFrom the proof it follows that e A m P / 0 if and only if A m Pj A A
/ 0 and e d / 0.j

As an immediate consequence of Theorem 2.15, we obtain:

Ž .2.16. COROLLARY. Keep the hypotheses and notation of Theorem 2.15 2 ,
and suppose that any two indecomposable finitely generated projectï e left
A-modules lying o¨er the same primitï e central idempotent are isomorphic as
A-modules.

r Žhi .k
HThen A m P ( [ M as A-modules, where M is an indecompos-A is1

able finitely generated projectï e left A-module lying o¨er e and k g N.
Ž . hMoreo¨er s e s e if and only if M ( M.h

Ž .Let Inn A denote the group of inner automorphisms of A. As a special
case we now obtain:

Ž . Ž . H2.17. COROLLARY. Suppose s H ; Inn A . Then we ha¨e A m PA
s W in Theorem 2.15, and we ha¨e A m H P ( M k in Corollary 2.16.A

Ž . Ž .Note. Suppose that s H ; Inn A . Let U denote the group of invert-
Ž . Ž . y1ible elements of A and consider j: U ª Inn A : u ¬ j with j a s uauu u

y1Ž Ž ..for all a g A. Take the subgroup L s j s H of U and restrict j to L.
Then AH s AL and AL is the centralizer in A of the R-subalgebra
generated by L.

To conclude, let us return to Schur algebras. So let G, H be finite
Ž .groups, let s : H ª Aut G be a homomorphism of groups, and suppose

Ž . Ž . Ž . Ž . y1that s H ; Inn G . Consider i: G ª Inn G : g ¬ i with i x s gxgg g
y1Ž Ž ..for all x g G. In this case, we take the subgroup K s i s H of G and
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we restrict i to K. Extending to automorphisms of RG, we get RGH s
K Ž .RG . Now, for any subgroup K of G and homomorphism i: K ª Inn G ,

we see that RG K is the centralizer of RK in RG. Further results on
w xmodules over centralizers can be found in 10, 3 .

3. SYMMETRIC FUNCTIONS ON FROBENIUS ALGEBRAS

Throughout, R is a commutative ring and A is a faithful R-algebra
Ž .which is a finitely generated free R-module. Recall that A* s Hom A, RR

Ž .Ž . Ž .is a left A-module under the operation a . f x s f xa for a, x g A,
f g A*.

Ž .3.1. Remarks. An R-bilinear form on A is called associative if b xy, ¨
Ž .s b x, y¨ for all x, y, ¨ g A. As is well known, there is a one-to-one

correspondence between associative R-bilinear forms b: A = A ª R and
Ž . Ž . Ž .Ž .left A-linear maps b : A ª A*, given by b x, y s b y x , x, y g A.

On the other hand, an A-linear map b : A ª A* is completely deter-
Ž . Ž .mined by b 1 s t , and the above correspondence yields b x, y s

Ž .t xy , x, y g A.

3.2. LEMMA. Let b be an associatï e R-bilinear form on A, let b :
Ž .A ª A* be the corresponding left A-linear map, and t s b 1 . The following

statements are equï alent:

Ž . � 4 � 4 Ž .1 There are R-bases a , . . . , a , b , . . . , b in A such that b a , b1 n 1 n i j
form an in¨ertible matrix.

Ž . � 4 � 42 For each R-basis a , . . . , a of A there exists an R-basis b , . . . , b1 n 1 n
Ž .of A with b a , b s d .i j i j

Ž .3 b is an isomorphism.
Ž .4 For e¨ery f g A* there is a unique a g A such that f s a . t .

w xProof. This is straightforward; see also 3, Lemma 3.1 .

Ž .A bilinear form satisfying property 2 is said to be nonsingular, and
� 4 � 4 Ž .a , b in 2 are called dual bases with respect to b. The R-algebra A isk k
called a Frobenius algebra if there exists a nonsingular associative R-bilin-
ear form on A.

Ž .Now let t , f , a be as in Lemma 3.2 4 ; then it is easily seen that f is also
a free generator of A* viewed as a left A-module if and only if a is
invertible in A. Furthermore, we have:

3.3. LEMMA. Let b be a nonsingular associatï e R-bilinear form on A with
� 4 � 4dual bases a , . . . , a , b , . . . , b , and let b : A ª A* be the corresponding1 n 1 n

y1 y1Ž . n Ž .left A-linear map. Then b : A* ª A is gï en by b f s Ý f a b .is1 i i

Ž Ž . .Ž . Ž Ž . . Ž .Proof. We have b Ý f a b a s b a ,Ý f a b s f a .i i i j j i i i j
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Ž . Ž .Recall that f g A* is said to be symmetric if f xy s f yx for all
x, y g A. The set of all symmetric functions f g A* will be denoted by

Ž . Ž .Sym A, R . The A-module structure on A* makes Sym A, R into a
Ž . Ž .Z A -module, where Z A denotes the center of A.
Furthermore, we say that A is a symmetric Frobenius algebra if there

exists a nonsingular associative R-bilinear form on A which is symmetric.

3.4. LEMMA. Let b be a nonsingular symmetric associatï e R-bilinear
form on A, and let b : A ª A* be the corresponding left A-linear map. Then

Ž . Ž . Ž .b induces an isomorphism of Z A -modules between Z A and Sym A, R .

Ž . Ž .Proof. Let t s b 1 ; t is symmetric. Obviously, if a g Z A , then
Ž . Ž .b a s a . t is symmetric. Now let f g Sym A, R , hence f s a . t for

Ž . Ž . Ž . Ž . Ž .some a g A. From f yx s f xy it follows that t yxa s t xya s t yax ,
for all x, y g A. Therefore xa . t s ax . t , whence xa s ax, for all x g A.

Ž .3.5. EXAMPLES. 1 Let G be a finite group and consider the twisted
� 4group ring R) G with R-basis u ¬ g g G . Consider the R-linear map t :a g

R) G ª R: Ý r u ¬ r . It is clear that t defines a symmetric asso-a g g G g g e
� 4ciative R-bilinear form on R) G with dual bases u ¬ g g G ,a g

� Ž y1 .y1 4 Ž .y1a g, g u ¬ g g G a is 2-cocycle .g

Ž . � 42 Let G be a finite group, let E ; g g G be a partition of G suchg
that Ey1 s E y1 , and let G denote a set of representatives of the distinctg g 0
E . Put s s Ý u in RG and suppose that S s [ Rs is a Schurg g x g E x gg g Gg 0

algebra in RG.
< <Now consider t : S ª R: Ý r s ª r . If each E is invertible in R,g g G g g e g0

then t defines a symmetric associative R-bilinear form on S with dual
� 4 � < <y1 < 4y1bases s ¬ g g G , E s g g G .g 0 g g 0

Ž . w x3 For some other examples we refer to 3, 3.8 .

Now let b be a nonsingular associative R-bilinear form on A with dual
� 4 � 4 Ž .bases a , . . . , a , b , . . . , b . Consider the Z A -linear map z : A ª A:1 n 1 n

x ¬ Ýn b xa . We have:is1 i i

Ž . Ž .3.6. PROPOSITION. 1 z x is independent of the choice of the dual
Ž .bases and z A is independent of the choice of the nonsingular associatï e

bilinear form.
Ž . Ž . Ž .2 z A is an ideal of the center Z A of A.
Ž . Ž .3 A is a separable R-algebra if and only if 1 g z A .
Ž . Ž . Ž .4 If b is symmetric, then z xy s z yx for all x, y g A.

Ž . Ž . w x Ž .Proof. Parts 1 and 2 follow from 3, Proposition 3.6 and 3 follows
w x Ž . � 4 � 4from 3, Propositions 3.7 and 3.10 . As for 4 , b , a are dual bases withi i

Ž . Ž .respect to b, i.e., b b , a s d , because b is symmetric. Then by 1 ,j i i j
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Ž . nz xy s Ý a xyb . Now for each x g A, we haveis1 i i

n n

a x s r a implies xb s r b , r g R .Ý Ýi ji j i i j j ji
js1 js1

Ž . Ž .Using these relations, we obtain z xy s z yx .

Keep the above notation and put z s z s Ýn a b .b is1 i i
Ž w x. Ž . Ž .It is easily verified see 3, 3.4 that b x, z s t x for all x g A, whereA

t denotes the trace function from A to R afforded by A viewed as leftA
A-module. In other words, t s z . t where t g A* is associated to b as inA
Remarks 3.1.

As a consequence, we obtain that z is independent of the choice of the
dual bases for b. Moreover, if b is symmetric, then z is central and

n Ž .z s Ý b a s z 1 . Furthermore, if b9 is another nonsingular associativeis1 i i
R-bilinear form on A, then we can find an invertible element u g A such
that z s z u.b b9

w xThe invertibility of z has been investigated in 3 . In particular, if R is a
field of characteristic zero and A is separable over R, then z is invertible
in A. Here we give an additional result on invertibility. We shall need the
Ž .Z A -module ker z . Clearly ker z is independent of the choice of the dual

bases for b and, in case b is symmetric, ker z is also independent of the
choice of the nonsingular symmetric form.

3.7. PROPOSITION. Keep the abo¨e notation and assumptions and suppose
that b is symmetric. Then the following statements are equï alent:

Ž .1 z is in¨ertible in A.
Ž . Ž .2 A is separable o¨er R and A s ker z [ Z A .

Ž . Ž .Proof. Note that z c s zc for all c g Z A .
Ž . Ž . Ž y1 . Ž . Ž .1 « 2 . Clearly z z s 1, hence z A s Z A and A is separable

Ž Ž y1 ..over R, see Proposition 3.6. For each x g A, we write x s x y z z x
Ž y1 . Ž .q z z x , and then it is easily checked that A s ker z [ z A .

Ž . Ž . Ž .2 « 1 . By the separability, we have 1 s z x for some x g A.
Ž .There exist elements y g ker z , y g Z A such that x s y q y . Thus1 2 1 2

Ž .1 s z y s zy .2 2

Next we show that, under certain conditions, symmetric functions are
determined by their values on the center. Again let A be a Frobenius
algebra, let b be a nonsingular associative R-bilinear form on A with dual

� 4 � 4bases a , b , and let z , z be as before.i i
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3.8. PROPOSITION. Assume that b is symmetric and that z is in¨ertible in
A. Gï en f g A*, the following conditions are equï alent:

Ž . Ž .1 f g Sym A, R .
Ž . Ž . Ž Ž y1 ..2 f x s f z z x for all x g A.
Ž .3 ker z ; ker f.

Ž . Ž . Ž Ž y 1 .. Ž y 1 .Proof. 1 « 2 . We have f z z x s f Ý b z xa si i i
Ž y1 . Ž .f Ý a b z x s f x .i i i
Ž . Ž . Ž y1 . y1 Ž .2 « 3 . Note that z z x s z z x .
Ž . Ž . Ž . Ž .3 « 1 . For all x, y g A, we have z xy s z yx , hence xy y yx g

ker z ; ker f.

3.9. PROPOSITION. Let b, z , z be as before and suppose that b is symmet-
Ž .ric. Then F ker f ; ker z where f ranges o¨er all elements of Sym A, R .f

If z is in¨ertible in A, then we get an equality.

Proof. Let t g A* be associated to b as in Remarks 3.1. Let x g A be
Ž . Ž . Ž .such that f x s 0 for all f g Sym A, R . Then by Lemma 3.4, t xc s 0
Ž . Ž Ž .. Ž .for all c g Z A . For each y g A, we now have t yz x s t Ý yb xai i i

Ž . Ž Ž . . Ž .s t Ý a yb x s t z y x s 0 using Proposition 3.6. Thus z x . t s 0,i i i
Ž .whence z x s 0.

In case z is invertible, we may apply Proposition 3.8 and we obtain an
equality.

Ž .We now show that, under certain conditions, Sym A, R has an R-basis
consisting of characters and we derive orthogonality relations for charac-
ters. Again let A be a Frobenius R-algebra, let b be a nonsingular

� 4 � 4associative R-bilinear form on A with dual bases a , . . . , a , b , . . . , b ,1 n 1 n
and put z s Ýn a b . Moreover we assume that b is symmetric, althoughis1 i i
some results can be proved without this assumption. Further, suppose that

� 4R is connected and let e , . . . , e be the set of primitive central nonzero1 q
idempotents of A. Let now M , . . . , M be nonzero left A-modules which1 q
are finitely generated and projective over R, and assume that e M s 0 fork i
k / i. Note that an indecomposable A-module P lies over exactly one e .i
Finally, we let rank stand for rank , and we recall that t denotes theR Mi

trace function from A to R afforded by M .i
3.10. THEOREM. Keep the abo¨e hypotheses and notation.

Ž . Ž .1 If R is a splitting ring for the center, that is, Z A s Re [ ??? [1
Re , thenq

n

rank M e s b e , e t a bŽ . Ž .Ž . Ýj j j j M i ij
is1

n

t z e s rank Ae t a b .Ž . Ž .Ž . ÝM j j M i ij j
is1
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Ž . n Ž . Ž .2 For j / k we ha¨e Ý t a t b s 0.is1 M i M ij k

Ž .3 Let L be any nonzero left A-module which is finitely generatedj
Žprojectï e o¨er R and has the property that e L s 0 for k / j special case:k j

. Ž .L s M . If R is a splitting ring for Z A , thenj j

n

b e , e t a t b s rank M rank L 1 .Ž . Ž . Ž . Ž . Ž .Ýj j M i L i j j Rj j
is1

Ž . Ž .4 With assumptions as in 3 we ha¨e

rank M t s rank L t .Ž . Ž .j L j Mj j

Ž . Ž . Ž .5 If rank M 1 / 0 and rank M 1 is not a zero dï isor in R fori R i R
i s 1, . . . , q, then t , . . . , t are linearly independent o¨er R.M M1 q

Ž . Ž . Ž .6 If R is a splitting ring for Z A and rank M 1 is in¨ertible in Ri R
Ž .for i s 1, . . . , q, then t , . . . , t form an R-basis of Sym A, R .M M1 q

Ž .7 We ha¨e
n

ze s t a b .Ž .Ýj A e i ij
is1

Ž . Ž .8 If R is a splitting ring for Z A and z is in¨ertible in A, then
Ž . Ž .t , . . . , t form an R-basis of Sym A, R Ae ¨iewed as left A-module .A e A e i1 q

Proof. Let t g A* be associated to b as in Remarks 3.1. For each tM j

there is a unique c g A such that t s c . t . By Lemma 3.3, c sj M j jjn Ž .Ý t a b .is1 M i ij

Further, it is easily seen that e . t s 0 for k / j. Consequentlyk M j

Ž .e c . t s 0, whence e c s 0 for k / j. Therefore c g Ae .k j k j j j

Ž . Ž .1 Since b is symmetric, c g Z A , see Lemma 3.4. Thus c s r ej j j j
Ž . Ž . Ž . Ž . Ž .with r g R. We now have t 1 s t c s r t e and t 1 s rank M 1 .j M j j j M j Rj j

Ž . Ž .Then rank M e s t e c and we obtain the first formula.j j j j
Further, we know that t s z . t . Using the fact that t s Ýq t onA A is1 A ei

Ž .A, it is easily seen that t s e . t we view A and Ae as left A-modules .A e j A ij
Ž .We thus obtain t s e z . t . Since b is symmetric, z is central and thusA e jjq Ž .z s Ý l e with l g R. Therefore t s l e . t . As a consequence,is1 i i i A e j jj

Ž . Ž . Ž . Ž .we have rank Ae 1 s l t e . On the other hand, t z s rank M l .j R j j M j jj
Ž . Ž . Ž . Ž .We now have t z e s rank M l e s l t e c s rank Ae c and thisM j j j j j j j j jj

gives the second formula.
Ž . n Ž .2 Apply t , k / j, to the expression c s Ý t a b .M j is1 M i ik j

Ž . Ž .3 Apply t to the first formula in 1 .L j

Ž . X X X X4 There is a unique c g A such that t s c . t , and c s r e withj L j j j jjX Ž . X Ž .r g R. Moreover, rank L 1 s r t e .j j R j j
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Let c , r be as above. Then we have c . t s cX . t and thus r t sj j j L j M j Lj j jX Ž . Ž .r t . Multiplying by t e , we obtain the formula in 4 .j M jj

Ž . q Ž .5 Suppose that Ý m t s 0 with m g R. Then Ý m t e s 0is1 i M i i i M ki i

Ž .for k s 1, . . . , q. We get rank M m s 0, whence m s 0 for k s 1, . . . , q.k k k

Ž . Ž .6 As before, we have t s r e . t with r g R. The invertibilityM j j jj
Ž . Ž .of rank M in R implies the invertibility of r in R, because rank M 1j j j R

Ž . Ž .s r t e . Now, e , . . . , e form an R-basis of Z A , and thus alsoj j 1 q
r e , . . . , r e . By Lemma 3.4, it follows that t , . . . , t form an R-basis of1 1 q q M M1 q

Ž .Sym A, R .
Ž . Ž . Ž .7 As in the proof of 1 , t s ze . t . The assertion follows fromA e jj

Lemma 3.3.
Ž . q Ž .8 We have z s Ý l e with l g R and t s l e . t . Since zis1 i i i A e j jj

Ž .is invertible in A, each l is invertible in R. We now proceed as in 6 ini
Ž .order to show that t , . . . , t form an R-basis of Sym A, R .A e A e1 q

3.11. Remarks. Keep the hypotheses and notation of Theorem 3.10
Ž .and assume that R is a splitting ring for Z A .

Ž . Ž .1 From the proof of Theorem 3.10 we retain that rank M 1 sj R
Ž . qr b e , e with r g R. Further, z s Ý l e with l g R and t sj j j j is1 i i i A e j

Ž . Ž . Ž .l e . t , in particular rank Ae 1 s l b e , e .j j j R j j j

Ž . Ž . Ž .2 If b e , e is invertible in R for i s 1, . . . , q, then b: Z A =i i
Ž .Z A ª R is nonsingular. The converse also holds.

Ž . Ž . Ž . Ž . Ž Ž ..3 For all x g A we have t x ze s rank M z x e s t z x e .M j j j M jj jq Ž . qIndeed, we may write z s Ý l e and z x s Ý m e . Clearly,is1 i i is1 i i
Ž Ž .. Ž . Ž Ž .. Ž n .t z x s rank M m . On the other hand, t z x s t Ý b xa sM j j M M is1 i ij j j
Ž . Ž .t zx s l t x .M j Mj j

As before, let b be a nonsingular symmetric associative R-bilinear form
� 4 � 4 non A with dual bases a , . . . , a , b , . . . , b , and put z s Ý a b .1 n 1 n is1 i i

� 4Suppose that R is connected and let e , . . . , e be the set of primitive1 q
Ž .central nonzero idempotents of A. We now assume that A ( End PR 1

Ž .[ ??? [ End P as R-algebras, P , . . . , P being finitely generated pro-R q 1 q
jective R-modules.

Ž .Observe that Z A s Re [ ??? [ Re . We recall that each P is an1 q i
Ž .indecomposable left A-module under the operation w , . . . , w . p s1 q

Ž . Ž .w p , p g P , and w g End P , and we may assume that P lies over e .i i j R j i i
All indecomposable left A-modules and their characters are described in
w x9, 1.8 and 2.2 .

w xFurther, from the proof of Theorem 3.13 in 3 we retain that t sA ej
Ž . Ž . Ž .2rank P t on A, in particular rank Ae s rank P .j P j jj

Clearly we may apply Theorem 3.10 to t . Moreover the following holdsPi

true.
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3.12. PROPOSITION. Keep the abo¨e hypotheses and notation. Then

Ž .1 We ha¨e

n

ze s rank P t a bŽ .Ž .Ýj j P i ij
is1

n

t z s rank P t a t b .Ž . Ž . Ž .Ž .ÝP j P i P ij j j
is1

Ž . Ž .2 z is in¨ertible in A if and only if all rank P 1 are in¨ertible in R.j R
Ž . Ž .Moreo¨er, rank P 1 is in¨ertible in R if and only if t z is in¨ertible in R.j R Pj

Ž . Ž .Proof. 1 We have t s rank P t . The first formula now followsA e j Pj j

Ž .from Theorem 3.10 7 . Applying t , we obtain the second formula.Pj

Ž .2 Let t g A* be associated to b. There is a unique c g A suchj
Ž . Ž .that t s c . t and c g Ae . Then t s rank P t s rank P c . t . OnP j j j A e j P j jj j j

Ž .the other hand, we know that t s ze . t , see Theorem 3.10. ThereforeA e jj
Ž . Ž Ž . .Ž .ze s rank P c and thus z s Ý rank P e Ý c . So the invertibility ofj j j j j j j j

Ž .z implies that all rank P are invertible in R. To prove the converse, wej
q Ž .2write z s Ý l e with l g R and we observe that rank P 1 sis1 i i i j R

Ž . Ž .rank Ae 1 s l b e , e , see Remarks 3.11.j R j j j
Ž . Ž .The last statement follows from t z s rank P l and the precedingP j jj

formula.

Ž .3.13. Remarks. 1 We do not need the fact that b is symmetric in
Ž . Ž . Ž . Ž .the proofs of Theorem 3.10 2 ] 5 ] 7 and Proposition 3.12 1 , and in the

Ž .proof of the implication: z invertible « rank P 1 invertible.j R

Ž . w x2 We recover the special case considered in 2, 9.17 .

Ž . Ž .3.14. EXAMPLES. 1 As in Example 3.5 1 , let A s R) G with bilin-a

ear form associated to t : A ª R: Ý r u ¬ r . In this caseg g G g g e
� 4 � Ž y1.y1 4 < <y1u , a g, g u , g g G, are dual bases and z s G u sg g e
< < Ž .G a e, e 1 .A

< < Ž .If R is connected, G is invertible in R, and R) G ( End Pa R 1
Ž . Ž w x.[ ??? [ End P with P as above see, for example, 8 , then we mayR q i

Ž .apply Theorem 3.10 and Proposition 3.12. Now all rank P are invertiblej
Ž . Ž . < < Ž .in R and t z s rank P G a e, e .P jj

Ž . Ž �2 Recall that a Schur algebra in RG with associated partition E ;g
4. < <g g G is a symmetric Frobenius R-algebra, whenever E is invertible ing

R for all g g G, cf. Example 3.5.
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3.15. Note. Let b be a nonsingular associative R-bilinear form on A
� 4 � 4with dual bases a , . . . , a , b , . . . , b , and let b : A ª A* be associated1 n 1 n

to b as in Remarks 3.1.

Ž .1 Since b is bijective, b induces a ring structure on A*. Explicitly,
Ž . Ž . Ž .let w, c g A*; w s b s , c s b t . Then w = c s b st .

Now let A s R) G with bilinear form associated to t : A ª R:a

Ž .Ý r u ¬ r , as in Example 3.5 1 . By Lemma 3.3, we haveg g G g g e

y1y1
y1st s w = c u a k , k u .Ž . Ž .Ý k k

kgG

On the other hand,

y1 y1y1 y1
y1 y1st s w u c u a g , g a h , h a g , h u .Ž . Ž . Ž . Ž .Ž .Ý Ý g h g h

ggG hgG

But

y1 y1 y1y1 y1a h , h a g , g a g , h a gh , ghŽ . Ž . Ž .Ž . Ž .
y1 y1y1s a h , h a h , ghŽ . Ž .Ž .

y1y1 y1s a e, e a h , g .Ž . Ž .
Consequently,

y1 y1y1 y1 y1
y1 y1st s w u c u a e, e a k g , g a k , k u .Ž . Ž . Ž . Ž .Ž .Ý Ý g k g k

kgG ggG

So we obtain

y1y1
y1w = c u s w u c u a e, e a kg , g .Ž . Ž . Ž . Ž . Ž .Ýk g k g

ggG

Ž .2 The map b also induces an R-bilinear form b* on A*. Explicitly,
Ž . Ž . Ž . Ž .let w, c g A*; w s b s , c s b t . Then b* w, c s b s, t . Now let b be

Ž . Ž .symmetric. Then we may write s s Ý w b a and t s Ý c a b . Conse-i i i j j j
Ž . n Ž . Ž . Ž . Ž .quently, b* w, c s Ý w b c a . The formulas in Theorem 3.10 2 ] 3is1 i i

Ž .and in Proposition 3.12 1 can be rewritten using the R-bilinear form b*.
Ž .3 We also have the following multiplication on A*. For w, c g A*,

Ž . Ž . Ž .define w )c a s w a c a and extend by linearity. On the other hand,i i i
we may consider the following componentwise multiplication on A. Let
s, t g A, write s s Ýn r b , t s Ýn rX b with r , rX g R, and set s) t sis1 i i is1 i i i i

n X Ž . Ž . Ž .Ý r r b . Then b s) t s b s ) b t , as is easily checked.is1 i i i
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4. CLASS FUNCTIONS ON SCHUR ALGEBRAS

Throughout this section, R is a commutative ring, G is a finite group,
� 4 y1 < <y1and E ; g g G is a partition of G such that E s E and E isg g g g

< <y1invertible in R. Put s s Ý u in RG, s s E s , and let Gˆg x g E x g g g 0g

denote a set of representatives of the distinct E . We assume thatg
S s [ Rs is a subalgebra with unit element, i.e., S is a Schur algebrag g G g0

in RG. Note that s s 1 , see Lemma 1.3.ê S
Recall that t : S ª R: Ý r s ¬ r defines a symmetric associativeg g G g g e0

� 4 � 4y1R-bilinear form b on S with dual bases s , s . As in Section 3, letĝ g
Ž . Ž .y1 y1z s Ý s s and z : S ª Z S : s ¬ Ý s ss . Again, Z S de-ˆ ˆg g G g g g g G g g0 0

notes the center of S.

4.1. DEFINITION. We define an equivalence relation on G as follows:
Ž . Ž . Ž .g ; h if and only if f s s f s for all f g Sym S, R . In this case we sayˆ ˆg h

Ž .that g and h are S-conjugated see also Note 4.12 .

Ž . Ž .4.2. PROPOSITION. Let g, h g G. If g ; h, then z s s z s . In case zˆ ˆg h
is in¨ertible in S, the con¨erse holds true.

Proof. The result follows from Proposition 3.9.

Ž .4.3. Remark. Suppose R is connected and S ( End P [ ??? [R 1
Ž .End P as R-algebras, P , . . . , P being finitely generated projectiveR q 1 q

R-modules, and suppose that z is invertible in S. Then g ; h if and only if
Ž . Ž . Ž .t s s t s for i s 1, . . . , q, see Theorem 3.10 6 and Propositionˆ ˆP g P hi i
Ž .3.12 2 .

4.4. LEMMA. Let g, h g G. If g ; h, then gy1 ; hy1.

Ž .Proof. Let f g Sym S, R . Take the map u : RG ª RG: Ý r u ¬g g G g g
Ý r u y1 and consider the restriction to S. By Lemma 1.4, f (u gg g G g g

Ž . Ž .Ž . Ž .Ž .Sym S, R . Since g ; h, we have f (u s s f (u s . The statementˆ ˆg h
follows at once.

For the remainder of this section, we fix the following notation. For
� 4 � 4g g G, set K s h g G ¬ g ; h . Obviously K ; g g G is a partition ofg g

G and by Lemma 4.4, K y1 s Ky1. Put ¨ s Ý u and let G denoteg g g x g K x 1g

a set of representatives of the distinct K .g
We observe that K s E j ??? j E , in particular ¨ g S. Furthermore,g g t g

Ž . < <y1 Ž .K s E . Indeed, t s s E 1 and t s s 0 for k f E .ˆ ˆe e e e R k e

4.5. DEFINITION. Let f g S*. We say that f is a class function on S if
Ž . Ž .g ; h in G implies that f s s f s . The set of all class functions formsˆ ˆg h

Ž . Ž . Ž .an R-submodule of S*, denoted by Cf S, R . Clearly Sym S, R ; Cf S, R .
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Ž . Ž .4.6. PROPOSITION. 1 Z S ; [ R¨ .g g G g1

Ž . Ž . Ž . Ž .2 Z S s [ R¨ if and only if Sym S, R s Cf S, R .gg g G1

Proof. Consider the left S-linear map b : S ª S* associated to t as in
Ž Ž .. Ž .Remarks 3.1. We know that b is bijective and b Z S s Sym S, R , by

Ž . Ž .Lemma 3.4. It suffices to show that b [R¨ s Cf S, R . We haveg
Ž .Ž . Ž . Ž .y1 y1b ¨ s s t s ¨ s 1 for k g K and t s ¨ s 0 for k f K . Henceˆ ˆ ˆg k k g g k g g
Ž . Ž .b [R¨ ; Cf S, R . For the reverse inclusion, use Lemma 3.3.g

At the end of this section we give an example to show that the inclusion
Ž .in Proposition 4.6 1 need not to be an equality. Our next objective is to

Ž .analyze the equality Z S s [R¨ . We begin with a few remarks.g

Ž . Ž . Ž .4.7. Remarks. 1 If s g Z S , then K s E by Proposition 4.6 1 .g g g

Ž . Ž . < < Ž .2 It is easily verified that z ¨ s K z s . In particular, if ¨ gˆg g g g
Ž . < < Ž .Z S , then z¨ s K z s .ˆg g g

Ž . Ž . < <3 If ¨ g Z S and z is invertible in S, then K is invertible in R.g g
< < Ž . y1 < <Indeed, ¨ s K z s z s K Ý r ¨ with r g R, whence 1 sˆg g g g k g G k k k1

< <K r .g g

Ž .4.8. PROPOSITION. Suppose that z is in¨ertible in S. Then Z S s
Ž .[ R¨ if and only if the distinct z s are linearly independent o¨er R.ˆg g G g k1

Ž . Ž .Proof. By Proposition 4.2, z s , g g G , are all distinct z s . Supposeˆ ˆg 1 t
Ž . Ž .that z s , g g G , are linearly independent over R. Let f g Cf S, R . Itĝ 1

suffices to show that f is symmetric, see Proposition 4.6. Let x g S be
Ž . Ž .such that z x s 0 and write x s Ý r s , r g R. So 0 s z x sˆk g G k k k0

Ž . Ž . Ž .Ý Ý r z s with J g s G l K , whence Ý r s 0. Itˆg g G k g J Ž g . k g 0 g k g J Ž g . k1
Ž .follows that f x s 0 and thus f is symmetric, see Proposition 3.8.

Ž . Ž .For the converse, use Remarks 4.7 2 and 3 .

As in Section 1, we may consider the following componentwise multipli-
cation on RG. Let a, a9 g RG, a s Ý r u , and a9 s Ý rX u withg g G g g g g G g g
r , rX g R. Then we define a) a9 s Ý r rX u . Of course S is closedg g g g G g g g
under this multiplication.

Ž .4.9. PROPOSITION. Suppose that R is a domain. If Z S is closed under
Ž .the abo¨e componentwise multiplication, then Z S s [ R¨ .g g G g1

Ž .Proof. 1 We first assume that R is a field. Note that Ý u sg g G g
Ž . Ž .Ý s g Z RG l S, hence Ý u g Z S . Then by Proposition 1.5,g g G g g g G g0

� 4 Ž .there is a partition F ; k g G of G such that Z S s [ Rw withk w kk
Ž .w s Ý u . Since Z S ; [ R¨ , each w is a sum of certain ¨ .k x g F x g g G g k gk 1

Fix w ; say w s ¨ q ??? q¨ , g g G . We now prove that m s 1.k k g g i 11 m
Ž . Ž . Ž .y1Let f g Sym S, R . By Lemmas 3.3 and 3.4, c s Ý f s s g Z S ,ˆg g G g g0

Ž .y1and c s Ý f s ¨ . But c)w s rw for some r g R. Thereforeˆg g G g g k k1
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Ž . Ž .y1 y1f s s ??? s f s s r. From this it follows that g ; g , i s 1, . . . , m.ˆ ˆg g 1 i1 m

Consequently, m s 1 and w s ¨ . Then, using Ý w s Ý ¨ , wek g w k g g G g1 k 1
Ž .obtain Z S s [ R¨ .g g G g1

Ž .2 Now let R be a domain with field of quotients L. Consider the
Ž . Ž .Schur algebra S s [ Ls in LS. We observe that Z S s Z S l S.g g G g0

Ž .Then it is easily verified that Z S is closed under componentwise multipli-
cation in LG. Further, g, h g G are S-conjugated if and only if they are
S-conjugated. In order to prove this, one needs the following remarks. A

Ž . Ž .map f g Sym S, R can be extended to a map f g Sym S, L by setting
Ž . Ž .f Ý l s s Ý l f s , l g L. On the other hand, let w gg g G g g g g G g g g0 0

Ž . Ž .Sym S, L . Then there exists r g R such that rw s g R for all g g G ,g 0
< Ž . Ž .and rw g Sym S, R . The above discussion yields the equality Z S sS

Ž . Ž .[ L¨ . Consequently, ¨ g Z S l S s Z S , as desired.g g G g g1

4.10. Remark. To the above defined componentwise multiplication on
Ž . Ž .RG there corresponds a multiplication on RG *; see Note 3.15 3 . Namely,

Ž . Ž . Ž . Ž .y1 y1 y1let w, c g RG *. Then w )c u s w u c u , or equivalently,g g g
Ž . Ž . Ž .w )c u s w u c u for all g g G.g g g

Ž .In the case where Z S s [R¨ we can derive the second orthogonalityg
relations.

Ž .4.11. PROPOSITION. Suppose R is connected and S ( End P [ ??? [R 1
Ž .End P as R-algebras, P , . . . , P being finitely generated projectï e R-R q 1 q

Ž .modules, and suppose that z is in¨ertible in S. If Z S s [ R¨ , theng g G g1

for g, h g G we ha¨e1

q
y1< < y1K rank P t z t s t s s d .Ž . Ž . Ž .ˆ ˆŽ .Ý h i P P g P h g hi i i

is1

< <Proof. Note that G s q. By Theorem 3.10 and Proposition 3.12,1

y1
y1rank P t z t s t s s d .Ž . Ž . Ž .ˆŽ .Ý i P P g P g i ji i j

ggG0

This gives

y1
y1rank P t z t s t ¨ s dŽ . Ž . Ž .ˆŽ .Ý i P P g P g i ji i j

ggG1

Ž . < < Ž .y1 y1and t ¨ s K t s . We can write this relation as AB s I; A, BˆP g g P gj j

being q = q matrices. Then BA s I, which implies the desired formula.

4.12. Note. We discuss the case where S s RG. Here, g, h g G are
RG-conjugated if and only if h s tgty1 for some t g G. Indeed, suppose

Ž . Ž . Ž . Ž .that f u s f u for all f g Sym RG, R . In other words, t u c sg h g
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Ž . Ž .t u c for all c g Z RG , see Lemma 3.4. Let s denote the sum in RG ofh
y1 y1 Ž . Ž .all distinct conjugates kg k , k g G. Clearly, s g Z RG and t u s sg

Ž . y1 y1 y11. Consequently, t u s s 1, whence tg t s h for some t g G. Theh
converse is obvious.

Ž . Ž .With notation as before, we have ¨ g Z RG and Z RG sg
Ž . < Ž . <[ R¨ . Moreover, z u s C g ¨ .g g G g g G g1

Let us now focus on the case where S is a double coset algebra. So let H
< <y1 < <y1be a subgroup of G with H g R, put « s H Ý u , and considerhg H h

S s « RG« , see also Section 2.
Ž . < <y1Let Z S and t be as before, and put s s HgH Ý u , forĝ x g H g H x

g g G.
� y1 4For RG-conjugacy we now set C s tkt ¬ t g G and w s Ý u ,k k x g C xk

with k g G.

4.13. PROPOSITION. Consider S s « RG« and let g , g g G.1 2

Ž .1 If g and g are S-conjugated, then1 2

< <y1 < < < <y1 < <Hg H Hg H l C 1 s Hg H Hg H l C 11 1 k R 2 2 k R

for any RG-conjugacy class C .k

Ž .2 If R is connected and R is a splitting ring for RG, then the con¨erse
Ž .of 1 holds.

Ž .Proof. Note that g and g are S-conjugated if and only if t s c sˆ1 2 g1
Ž . Ž .t s c for all c g Z S , see Lemma 3.4.ĝ 2

Ž . Ž . Ž . Ž .1 Clearly « w g Z S . Further, t s « w s t s w sˆ ˆk g k g k
< <y1 < <y1HgH HgH l C 1 . The assertion now follows.k R

Ž . Ž .2 It suffices to show that « w , k g G, generate Z S as R-module.k
� 4Let e , . . . , e be the set of primitive central nonzero idempotents of RG,1 q

Ž . Ž . Ž .and let « e / 0 for i s 1, . . . , m. Take a g Z S . By Theorem 2.5 1 ] 3 ,i
X Xmwe have a s Ý r « e with r g R. Moreover, e s Ýr w with r g R.is1 i i i i k k k

We conclude this section with a concrete example of the above situation,
w x Ž .based on 15 . This example shows that the inclusion in Proposition 4.6 1

need not to be an equality.

Ž .EXAMPLE. Consider in GL Z , the matrices3 3

1 0 0 1 0 0
a s , b s ,1 1 0 0 1 0ž / ž /0 0 1 0 1 1
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1 0 0 1 0 0
c s , d s .0 1 0 0 2 0ž / ž /1 0 1 0 0 1

² : 3 3 2 2Let G s a, b, d . We have the relations a s b s I, d s I, da s a d,
and db s b2d. Further, c s baby1ay1, c3 s I, and c commutes with
a, b, d. So each element of G can be expressed as aib jdkcl with i, j, l s
0, 1, 2 and k s 0, 1.

1² : Ž . Ž .Now let H s d , put « s u q u in CG, and consider S s « CG « .I d2

Using Proposition 4.13 and the RG-conjugacy classes C and C , it is easya d
to check that the S-conjugacy class K of a is equal to HaH. However,a

Ž .HaHs Ý u does not commute with HbH, and thus HaHf Z S .x g H a H x

5. TRACE FUNCTIONS OF INDUCED MODULES

Throughout this section, R is a commutative ring, G is a finite group,
and H is a subgroup of G. Let S be a Schur algebra in RG with

� 4associated partition E ; g g G and let B be a Schur algebra in RH withg
� 4partition F ; h g H . Further, let G , resp. H , denote a set of represen-h 0 0

tatives of the distinct E , resp. F . Put s s Ý u and b s Ý u .g h g x g E x h x g F xg h

5.1. DEFINITION. The Schur algebra B is called a Schur subalgebra of
S if for each h g H we have F s jE , for some g g G.h g

For the remainder of this section, we assume that B is a Schur
< <y1 < <y1subalgebra of S. We also assume E g R and F g R for allg hy1 ˆ< <g g G, h g H. We set s s E s , analogously b .ĝ g g h

˜Ž . Ž .5.2. DEFINITION. Let f g Hom B, R . We define f g Hom S, R asR R
˜ ˜ ˆŽ . Ž . Ž .follows: f s s 0 if g f H and f s s f b if g g H, and extend byˆ ˆg g g

linearity.
<̃We observe that f s f.B

Under certain conditions, we shall derive a formula for the trace
function of an induced module. We set z s Ý s s y1 and z sˆS g g G g g B0ˆ y1Ý b b .hg H h h0

5.3. PROPOSITION. Assume that F s E and that z is in¨ertible in S.e e S
Suppose R is connected and finitely generated projectï e R-modules are free.

q Ž . p Ž .Further, suppose S ( [ End M and B ( [ End N as R-js1 R j is1 R i
algebras, where M , N are finitely generated projectï e R-modules. Set N S sj i i
S m N . ThenB i

˜st z t s rank N t (z on S,Ž . Ž . Ž .N B N R i Ni i i

Ž . y1where z : S ª Z S : x ¬ Ý s xs .ˆg g G g g0
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ŽProof. Recall that N is an indecomposable left B-module similari
. Ž .remark for M . Combining Remark 3.11 3 and Proposition 3.12, we havej

for any x g S
q

y1z x s t x t s s .Ž . Ž . Ž .ˆÝ ÝM M g gj jž /
js1 ggG0

˜Applying t to this expression yieldsNi

q

ˆ˜ y1t z x s t x t s t bŽ . Ž . Ž .Ž . Ý Ý ž /N M M g N gi j j iž /
js1 ggG lH0

q

ˆy1s t x t b t b .Ž . Ž .Ý Ý ž /M M g N gj j iž /
js1 ggH0

< ck jBy the hypothesis on R, we have M ( [ N as left B-modules,Bj k k
where c g N. Thus t s Ý c t on B. Using the orthogonality rela-k j M k k j Nj k

Ž . Ž .tions, Theorem 3.10 2 and Proposition 3.12 1 , we then obtain
q

˜rank N t z x s t x c t z .Ž . Ž . Ž . Ž .Ž . ÝR i N M i j N Bi j i
js1

By the hypothesis on R, we can apply a version of Frobenius reciprocity,
qw x ssee 3, 1.2 . This gives t s Ý c t , which completes the proof.N js1 i j Mi j

< <To conclude, let S s RG and B s RH. In this case we have z s G uS e
< < Žand z s H u . With hypotheses and notation as in Proposition 5.3 ineB
< <y1 .particular G g R , we now obtain

< < ˜s y1H t u s t u , for x g GŽ . ÝN x N g x gi i ž /
ggG

Ž Ž ..use also Proposition 3.12 2 . Of course, this formula can be proved
Žwithout any assumption N being a left RH-module, which is finitely

.generated and projective over R .
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