A pplications of F robenius A Igebras to R epresentation Theory of Schur A Igebras

L. Delvaux and E. Nauwelaerts

Department of Mathematics, Limburgs Universitair Centrum,
metadata, citation and similar papers at core.ac.uk

R eceived J anuary 10, 1997

A Schur algebra is a subalgebra of the group algebra $R G$ associated to a partition of G, where G is a finite group and R is a commutative ring. For two classes of Schur algebras we study the relationship between indecomposable modules over the Schur algebra and over $R G$, but we discuss this problem in a more general context. Further we develop a character theory for Schur algebras; in particular, we express primitive central idempotents in terms of trace functions and we derive orthogonality relations for trace functions. These results are also presented in a more general context, namely for Frobenius algebras over rings. M oreover, we focus on class functions on Schur algebras. © 1998 A cademic Press

INTRODUCTION

A Schur algebra is a subalgebra of the group algebra $R G$ associated to a partition of G, where G is a finite group and R is a commutative ring, see Definition 1.1. Schur algebras over \mathbb{C} were introduced by Schur and W ielandt [14], and were first studied by Tamaschke [13] and R oesler [11].

In Section 2 we study indecomposable modules for two important classes of Schur algebras: double coset algebras (and their generalizations, see Proposition 2.7) and fixed rings of certain automorphism groups. Double coset algebras are studied in the more general situation of Hecke algebras: if A is an R-algebra and ε a nonzero idempotent of A, then $\varepsilon A \varepsilon$ is called a H ecke in A. We investigate the relationship between indecomposable modules over $\varepsilon A \varepsilon$ and indecomposable modules over A, and we determine the primitive central idempotents of $\varepsilon A \varepsilon$ in terms of the idempotents of A, see Proposition 2.4 and Theorem 2.5. In particular, we prove that a connected ring R is a splitting ring for $\varepsilon A \varepsilon$ whenever it is a splitting ring for A.

Furthermore, we study the relationship between indecomposable modules over an R-algebra A and indecomposable modules over the fixed ring A^{H}, which is associated to a group homomorphism $\sigma: H \rightarrow \operatorname{Aut}_{R}(A)$, see Theorem 2.15 and Corollary 2.16. These results can be applied to the situation where A is the group algebra $R G$ and σ is derived from a group homomorphism $H \rightarrow \mathrm{~A} u t(G)$, and in this case A^{H} is a Schur algebra. In the special case where H is a subgroup of G and $\sigma_{h}, h \in H$, is an inner automorphism, the fixed ring coincides with the centralizer of $R H$ in $R G$, and in [10, 3] we obtained more relations between indecomposable modules over $R H, R G$, and $R G^{H}$.
In Section 3 we develop a character theory for Schur algebras. We show that Schur algebras are Frobenius algebras (under a suitable condition). Therefore we set up this problem in the more general context of F robenius algebras over commutative rings. First we collect some generalities on Frobenius algebras, including a criterion for separability. We then study symmetric functions on Frobenius R-algebras and we show that, under certain conditions, they are generated over R by trace functions. We express primitive central idempotents of a F robenius algebra A in terms of trace functions and we derive orthogonality relations for trace functions on A, see Theorem 3.10 and Proposition 3.12.

In the case of Schur algebras we introduce class functions and we investigate when the set of class functions coincides with the set of symmetric functions. In fact, this latter study yields an analysis of the center of a Schur algebra. To conclude we calculate the trace function of induced modules between two Schur algebras (Section 5).

Throughout this paper rings are assumed to have a unit element and modules are unitary:

1. PRELIMINARIES

Throughout R is a commutative ring. A ring is said to be connected if 0 and 1 are the only idempotent elements. We begin with some useful facts about indecomposable modules.
Let A be an R-algebra and suppose that R is connected. We first remark that a left A-module, which is finitely generated and projective over R, is a finite direct sum of indecomposable left A-modules (use rank_{R}). Now assume that A is finitely generated and projective as an R-module. Then there exist primitive central orthogonal nonzero idempotents e_{1}, \ldots, e_{q} in A such that $1=e_{1}+\cdots+e_{q}$ (use rank ${ }_{R}$). M oreover, each central nonzero idempotent of A is uniquely a sum of some e_{i}. If M is an indecomposable left A-module, then there is a unique i such that $e_{i} M \neq 0$ and we say that M lies over e_{i}. Further, if any two indecompos-
able finitely generated projective left A-modules lying over the same e_{i} are isomorphic as A-modules, then it is easily seen that any finitely generated projective left A-module is uniquely expressible as a finite direct sum of indecomposable left A-modules (up to isomorphism). The same remark holds if we replace projectivity over A by projectivity over R.

In addition, suppose that A is a separable R-algebra. Then a left A-module is projective as an R-module if and only if it is projective as an A-module, cf. [5, p. 48]. Furthermore, if R is semilocal, then any two indecomposable finitely generated projective left A-modules lying over the same primitive central idempotent of A are isomorphic as A-modules, see [4, Theorem 1; 10, Note 3.4]. Note also that a separable R-algebra, where R is a field, is semisimple.

We now assume that R is a splitting ring for A (or A is split separable over R); that is, $A \cong \operatorname{End}_{R}\left(M_{1}\right) \oplus \cdots \oplus \operatorname{End}_{R}\left(M_{q}\right)$ as R-algebras, M_{1}, \ldots, M_{q} being finitely generated projective faithful R-modules. R ecall that finitely generated projective nonzero modules over connected commutative rings are always faithful, see [5, p. 8]. Note also that the center of A is a free R-module of rank q. Obviously M_{i} can be viewed as a left A-module by setting $\left(\varphi_{1}, \ldots, \varphi_{q}\right) \cdot m=\varphi_{i}(m)$, where $m \in M_{i}$ and $\varphi_{j} \in$ End $_{R}\left(M_{j}\right)$. Since R is connected, each M_{i} is an indecomposable left A-module, and they are not isomorphic as such. Now assume that M_{i} lies over the primitive central idempotent e_{i} of A. If finitely generated projective R-modules are free, for example, when R is semilocal or a principal ideal domain, then M_{i} is, up to isomorphism, the only indecomposable finitely generated projective left A-module lying over e_{i} (see $[9,18])$. N ote also that any semisimple \mathbb{C}-algebra is split separable over \mathbb{C}.

Next, we recall some basic facts about trace functions. Let A be an R-algebra and V a left A-module which is finitely generated and projective over R. Let $\left\{v_{1}, \ldots, v_{n}\right\} \subset V,\left\{\varphi_{1}, \ldots, \varphi_{n}\right\} \subset \operatorname{Hom}_{R}(V, R)$ be an R-dual basis for V. The trace function (or character) from A to R afforded by V, notation t_{V}, is defined as $t_{V}(a)=\sum_{i=1}^{n} \varphi_{i}\left(a v_{i}\right)$, for all $a \in A$. It is easily seen that t_{V} does not depend on the choice of the dual basis. Further, $t_{V}(x y)=t_{V}(y x)$ for all $x, y \in A$, and if R is connected, then $t_{V}(1)=$ $\operatorname{rank}_{R}(V) 1_{R}$; see $[9,2.5]$.

To conclude this subsection, let us focus on group rings. Let G be a finite group and consider the group ring $R G$. As R-module, $R G$ will be freely generated by symbols $\left\{u_{g} ; g \in G\right\}$. Recall that in case $|G|^{-1} \in R$, $R G$ is separable over R. Further, suppose R is connected and $|G|^{-1} \in R$. Let m be the exponent of G and let η be a primitive m th root of unity. Then $L=R[\eta]$ is a splitting ring for $L G$, see [12].

We now turn to Schur algebras in $R G$.
1.1. Definition. Let G be a finite group and let $\left\{E_{g} ; g \in G\right\}\left(g \in E_{g}\right)$ be a partition of G such that $E_{g}^{-1}=E_{g^{-1}}$. Denote by G_{0} a set of representatives of the distinct E_{g}. Now let R be a commutative ring and put $s_{g}=\sum_{x \in E_{g}} u_{x}$ in $R G$. If $S=\oplus_{g \in G_{0}} R s_{g}$ is a subalgebra of $R G$ with unit element 1_{S}, then S is said to be a Schur algebra in $R G$.
1.2. Remarks. (1) Keep the notation of Definition 1.1 and suppose that $S=\oplus_{g \in G_{0}} R s_{g}$ is a subalgebra of $R G$ with unit element. Then the following statement need not hold:

$$
\begin{equation*}
\forall g, h \in G, \quad E_{g} E_{h}=\bigcup_{k} E_{k} \text { for some } k \in G \tag{*}
\end{equation*}
$$

H owever, if $\operatorname{char}(R)=0$, then property ($*$) follows from the ring structure of S. We also remark that property (*) holds for the Schur algebras considered in Section 2.
(2) A n example of a Schur algebra for which property ($*$) does not hold is given in [1]. Namely, take $R=\mathbb{Z}_{2}, G=\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ and consider the partition $\{(0,0),(0,1),(0,2),(1,0),(2,0)\},\{(1,1),(2,2),(1,2),(2,1)\}$. Here, $s_{(0,0)}$ is the unit element.

Of course, if $E_{e}=\{e\}$, then $s_{e}=1_{S}$. Furthermore:
1.3. Lemma. Let R, G, E_{g}, s_{g} be as in Definition 1.1.
(1) Suppose for all $g, h \in G$ we have $E_{g} E_{h}=\cup_{k} E_{k}$ (some $k \in G$). Then E_{e} is a subgroup of G and $s_{e} s_{g}=s_{g} s_{e}=\left|E_{e}\right| s_{g}$ for all $g \in G$.
(2) Suppose that $S=\oplus_{g \in G_{0}} R s_{g}$ is a subalgebra of $R G$ with unit element 1_{s}. Then $\left|E_{e}\right|$ is invertible in R. Moreover, if $\left|E_{g}\right| 1_{R} \neq 0$ and $\left|E_{g}\right| 1_{R}$ is not a zero divisor in R for each $g \in G$, then $1_{S}=\left|E_{e}\right|^{-1} s_{e}$.

Proof. (1) We shall prove that $x E_{g} \subset E_{g}$ for all $x \in E_{e}$. But then equality must hold, because $\left|x E_{g}\right|=\left|E_{g}\right|$. A nalogously $E_{g} x=E_{g}$, and the assertions follow. Now take $y \in E_{g}$ and put $h=x y$. Then $E_{h} E_{g^{-1}} \cap E_{e} \neq$ \varnothing, and thus by our hypothesis $E_{e} \subset E_{h} E_{g^{-1}}$. Therefore $E_{h}=E_{g}$.
(2) W rite $1_{S}=\sum_{g \in G_{0}} r_{g} s_{g}$ with $r_{g} \in R$, and let $e \in G_{0}$. Then $s_{t}=$ $\sum_{g \in G_{0}} r_{g} s_{g} s_{t}$ for all $t \in G$. Comparing coefficients of u_{e}, we obtain $1=\left|E_{e}\right| r_{e}$ and $0=\left|E_{g}\right| r_{g}$ for all $g \in G_{0} \backslash\{e\}$. The result now follows.
W e also mention the following elementary fact.

1.4. Lemma. Let R, G be as above.

(1) The map $\theta: R G \rightarrow R G: \sum_{g \in G} r_{g} u_{g} \mapsto \sum_{g \in G} r_{g} u_{g^{-1}}$ is an antiisomorphism and $\theta \circ \theta=I$.
(2) If S is a Schur algebra in $R G$, then $\theta(S)=S$.

A gain, R is a commutative ring and G is a finite group. We may consider the following componentwise multiplication on $R G$. Let $a, a^{\prime} \in$ $R G, a=\sum_{g \in G} r_{g} u_{g}$, and $a^{\prime}=\sum_{g \in G} r_{g}^{\prime} u_{g}$ with $r_{g}, r_{g}^{\prime} \in R$. Then we define $a * a^{\prime}=\sum_{g \in G} r_{g} r_{g}^{\prime} u_{g}$. N ote that $R G, *$ is a commutative R-algebra with $\sum_{g \in G} u_{g}$ as unit element. Evidently, every Schur algebra in $R G$ is closed under this multiplication and contains $\sum_{g \in G} u_{g}$. On the other hand, we have:

1.5. Proposition. Suppose R is a field.

(1) Let S be an R-submodule of $R G$. If S is closed under the multiplication * and $\sum_{g \in G} u_{g} \in S$, then there is a partition $\left\{E_{g} ; g \in G\right\}$ of G such that $S=\oplus_{g \in G_{0}} R s_{g}$, where $s_{g}=\sum_{x \in E_{g}} u_{x}$ and G_{0} denotes a set of representatives of the distinct E_{g}.
(2) Let S be an R-subalgebra of $R G$ with unit element. If S satisfies the conditions in (1) and $\theta(S) \subset S$, then S is a Schur algebra in $R G$.
Proof. (1) We consider the R-algebra $S, *$. There exist orthogonal primitive nonzero idempotents in S, *, say e_{1}, \ldots, e_{m}, such that $\sum_{g \in G} u_{g}$ $=e_{1}+\cdots+e_{m}$. Clearly, $\left\{u_{g} ; g \in G\right\}$ is the set of primitive idempotents of $R G$, * and thus we have $e_{1}=u_{g_{1}}+\cdots+u_{g_{t}}$ and so on. By the above remarks we obtain a partition of G, namely $E_{g_{1}}=\left\{g_{1}, \ldots, g_{t}\right\}$, etc.

Next, the multiplication * makes $R u_{g}$ into a left S-module. Since $\operatorname{dim}_{R}\left(R u_{g}\right)=1, R u_{g}$ is a simple S-module. So $R G$ is a semisimple left S-module and thus $S, *$ is a semisimple ring. But then $S * s_{g} \cong R u_{g}$ as S-modules ($s_{g_{1}}=e_{1}$). Consequently $\operatorname{dim}_{R}\left(S * s_{g}\right)=1$, and thus $R s_{g} \subset S * s_{g}$ must be an equality.
(2) Let θ be as above. Clearly, $\theta: R G, * \rightarrow R G$, * is an isomorphism of R-algebras and $\theta \circ \theta=I$. Since $\theta(S) \subset S$, it follows that $\theta\left(s_{g}\right)=$ $s_{g^{-1}}$ is a primitive idempotent of $S, *$. This proves our assertion.
1.6. Note. Let S be a Schur algebra in $R G$ with associated partition $\left\{E_{g} ; g \in G\right\}$. A ssume R is connected, $|G|^{-1} \in R$, and consider the idempotent $\varepsilon=|G|^{-1} \sum_{g \in G} u_{g}$. Clearly $\varepsilon \in S$ and $s_{g} \varepsilon=\left|E_{g}\right| \varepsilon=\varepsilon s_{g}$, with $s_{g}=$ $\sum_{x \in E_{g}} u_{x}$. Now $S \varepsilon=R \varepsilon$ is an indecomposable left S-module, and thus ε is a primitive idempotent of S. M oreover ε is an element of the center of S. Furthermore, $t_{S_{\varepsilon}}\left(s_{g}\right)=\left|E_{g}\right| 1_{R}$.

2. INDECOMPOSABLE MODULES OVER SCHUR ALGEBRAS

Throughout, R is a commutative ring and G is a finite group. Our aim is to investigate the relationship between indecomposable $R G$-modules and indecomposable modules over certain Schur algebras.

We begin with some results about double coset algebras. Let H be a subgroup of G. Suppose that $|H|^{-1} \in R$ and consider the idempotent $\varepsilon=|H|^{-1} \sum_{h \in H} u_{h}$ in $R G$. Then $\varepsilon R G \varepsilon$ is a Schur algebra, called a double coset algebra. Indeed, $H \times H$ acts on G as follows: $((h, k), g) \mapsto$ $h g k^{-1}, h, k \in H, g \in G$, and $(H g H)^{-1}=H g^{-1} H$. Furthermore, $|H g H|$ is invertible in R and $\sum_{x \in H g H} u_{x}=|H g H| \varepsilon u_{g} \varepsilon$.

We shall discuss relations between $R G$ and $\varepsilon R G \varepsilon$ in a more general context. Until further notice, A denotes an R-algebra and ε a nonzero idempotent of A. Note that $\left(\operatorname{End}_{A}(A \varepsilon)\right)^{0} \rightarrow \varepsilon A \varepsilon: \psi \mapsto \psi(\varepsilon)$ is an isomorphism of R-algebras. Further, if A is finitely generated and projective as R-module, then so is $\varepsilon A \varepsilon$. From [10, 4.1] we retain:
2.1. Proposition. Suppose that A is finitely generated and projective as R-module and suppose that $\varepsilon A \varepsilon$ is a faithful R-algebra (this follows whenever R is connected). If A is separable over R, then so is $\varepsilon A \varepsilon$.

In particular, if $|G|$ is invertible in R, then every double coset algebra in $R G$ is separable over R. From [2, 6.3] we may deduce:
2.2. Proposition. Let \mathscr{P} be the category of all finitely generated projective left $\varepsilon A \varepsilon$-modules and let $\mathscr{C}=\mathscr{C}(A \varepsilon)$ be the category of all left A-modules which are isomorphic to A-direct summands of $(A \varepsilon)^{m}$ for some m. Then the functors $A \varepsilon \otimes_{\varepsilon A \varepsilon}-: \mathscr{P} \rightarrow \mathscr{C}$ and $\operatorname{Hom}_{A}(A \varepsilon,-): \mathscr{C} \rightarrow \mathscr{P}$, denoted by F_{1} resp. F_{2}, define an equivalence of categories between \mathscr{P} and \mathscr{C}. Consequently, indecomposable modules in \mathscr{P} correspond to indecomposable modules in \mathscr{C} under F_{1} and F_{2}.

It is clear that $\operatorname{Hom}_{A}(A \varepsilon, M)$ is a right $\mathrm{End}_{A}(A \varepsilon)$-module, hence it is a left $\varepsilon A \varepsilon$-module (M being a left A-module). Moreover, $\mathrm{Hom}_{A}(A \varepsilon, M)$ $\rightarrow \varepsilon M: \psi \mapsto \psi(\varepsilon)$ is an isomorphism of left $\varepsilon A \varepsilon$-modules.

Further, if $0 \neq M \in \mathscr{C}(A \varepsilon)$, then M is a finitely generated projective left A-module and $\varepsilon M \neq 0$. We now focus on central idempotents.
2.3. Remarks. Suppose that R is connected and that A is finitely generated and projective as R-module. Let $\left\{e_{1}, \ldots, e_{q}\right\}$, resp. $\left\{d_{1}, \ldots, d_{m}\right\}$, be the set of primitive central nonzero idempotents of A, resp. $\varepsilon A \varepsilon$.
(1) Each nonzero εe_{i} is uniquely expressible as a sum of d_{j} 's and each d_{j} appears in one and only one of the nonzero εe_{i}.
(2) Let $P \in \mathscr{P}$ be indecomposable (notation as in Proposition 2.2). Then $A \varepsilon \otimes_{\varepsilon A \varepsilon} P$ lies over e_{i} if and only if $\varepsilon e_{i} \neq 0$ and P lies over some d_{j} appearing in the decomposition of εe_{i}.
(3) We may write d_{j} as a sum of orthogonal primitive nonzero idempotents of $\varepsilon A \varepsilon$, say $d_{j}=\eta_{1}+\cdots+\eta_{k}$ (use rank ${ }_{R}$). It is clear that $\varepsilon A \varepsilon \eta_{i}$ is an indecomposable module in \mathscr{P} lying over d_{j}.
2.4. Proposition. Let R, A, and $\left\{e_{1}, \ldots, e_{q}\right\}$ be as in Remarks 2.3. Suppose that any two indecomposable finitely generated projective left A modules lying over the same e_{i} are isomorphic as A-modules, then:
(1) The nonzero εe_{i} are precisely the distinct primitive central idempotents of $\varepsilon A \varepsilon$.
(2) Any two indecomposable finitely generated projective left $\varepsilon A \varepsilon$ modules lying over the same nonzero εe_{i} are isomorphic as $\varepsilon A \varepsilon$-modules.
(3) Let M be an indecomposable finitely generated projective left A module lying over e_{i}. Then $\varepsilon M \neq 0$ if and only if $\varepsilon e_{i} \neq 0$, and this is equivalent to $M \in \mathscr{C}(A \varepsilon)$.

Proof. The result follows readily from Proposition 2.2 and Remarks 2.3.
2.5. Theorem. Let R, A, and $\left\{e_{1}, \ldots, e_{q}\right\}$ be as in Remarks 2.3. Suppose $A \cong \mathrm{End}_{R}\left(M_{1}\right) \oplus \cdots \oplus \mathrm{End}_{R}\left(M_{q}\right)$ as R-algebra, M_{i} being finitely generated projective R-modules, and assume that M_{i} lies over e_{i}. Then:
(1) The nonzero εe_{i} are the primitive central idempotents of $\varepsilon A \varepsilon$.
(2) $\varepsilon M_{i} \neq 0$ if and only if $\varepsilon e_{i} \neq 0$, and this is equivalent to $M_{i} \in$ $\mathscr{E}(A \varepsilon)$.
(3) Each nonzero εM_{i} is an indecomposable left $\varepsilon A \varepsilon$-module and $\varepsilon A \varepsilon \cong \oplus_{i} \mathrm{End}_{R}\left(\varepsilon M_{i}\right)$ as R-algebras, where the sum is taken over the nonzero εM_{i}.

Proof. Recall that each M_{i} is an indecomposable left A-module under the operation $\left(\varphi_{1}, \ldots, \varphi_{q}\right) \cdot m=\varphi_{i}(m), m \in M_{i}$, and $\varphi_{j} \in \operatorname{End}_{R}\left(M_{j}\right)$.
It is easily seen that each nonzero εM_{i} is a finitely generated projective R-module. Further, since A is separable over R, projectivity over R is equivalent to projectivity over A. The same remark holds for $\varepsilon A \varepsilon$.
(a) Obviously $\varepsilon M_{i} \neq 0$ yields $\varepsilon e_{i} \neq 0$. Now assume $\varepsilon e_{i} \neq 0$. Let $\left\{d_{1}, \ldots, d_{m}\right\}$ be as in Remarks 2.3; then εe_{i} is a sum of d_{j} 's. Consider an indecomposable module $P \in \mathscr{P}$ which lies over some d_{j}, appearing in the decomposition of εe_{i}. We know that $A e_{i} \cong \operatorname{End}_{R}\left(M_{i}\right)$, and $A \varepsilon \otimes_{\varepsilon A \varepsilon} P$ is a unitary left $A e_{i}$-module. Therefore there is an R-module L such that $A \varepsilon \otimes_{\varepsilon A \varepsilon} P \cong L \otimes_{R} M_{i}$ as left A (or $A e_{i}$)-modules, see, e.g., [5, p. 19]. Then $P \cong L \otimes_{R} \varepsilon M_{i}$ as left $\varepsilon A \varepsilon$-modules. Consequently, $\varepsilon M_{i} \neq 0$ and $d_{j} \varepsilon M_{i} \neq 0$.
(b) A ssume $\varepsilon M_{i} \neq 0$. We observe that $\varepsilon M_{i} \in \mathscr{P}$. Thus $A \varepsilon \otimes_{\varepsilon A \varepsilon} \varepsilon M_{i}$ $\in \mathscr{C}(A \varepsilon)$ and it is a unitary left $A e_{i}$-module. But then there is a finitely generated projective R-module N such that $A \varepsilon \otimes_{\varepsilon A \varepsilon} \varepsilon M_{i} \cong N \otimes_{R} M_{i}$ as left A (or $A e_{i}$)-modules, see, e.g., [5, p. 19 and 23]. As a consequence,
$\varepsilon M_{i} \cong N \otimes_{R} \varepsilon M_{i}$ as left $\varepsilon A \varepsilon$-modules. This implies that $\operatorname{rank}_{R}\left(\varepsilon M_{i}\right)=$ $\operatorname{rank}_{R}(N) \operatorname{rank}_{R}\left(\varepsilon M_{i}\right)$, whence $\operatorname{rank}_{R}(N)=1$. Therefore $E_{R d}(N)=R I$ $\cong R$, see, e.g., [5, p. 32]. Since we are dealing with equivalent categories, we have $\operatorname{End}_{A}\left(N \otimes_{R} M_{i}\right) \cong \operatorname{End}_{R}(N)$ and $\operatorname{End}_{A}\left(A \varepsilon \otimes_{\varepsilon A \varepsilon} \varepsilon M_{i}\right) \cong$ $\mathrm{End}_{\varepsilon A \varepsilon}\left(\varepsilon M_{i}\right)$ as R-algebras, see, e.g., [5, p. 17]. We conclude that $\mathrm{End}_{\varepsilon A \varepsilon}\left(\varepsilon M_{i}\right)=R I \cong R$. In particular, εM_{i} is an indecomposable left $\varepsilon A \varepsilon$-module, see $[2,6.4]$.
(c) Since each nonzero εM_{i} is indecomposable, it follows from (a) that each nonzero εe_{i} is a primitive central idempotent of $\varepsilon A \varepsilon$. Let $\varepsilon M_{i} \neq 0$. Since $\mathrm{End}_{\varepsilon A \varepsilon}\left(\varepsilon M_{i}\right)=R I$, we then obtain $\varepsilon A \varepsilon e_{i} \cong \operatorname{End}_{R}\left(\varepsilon M_{i}\right)$ as R-algebras, see [9,1.7] (the isomorphism associates to $\varepsilon a \varepsilon e_{i}$ the left multiplication by $\varepsilon a \varepsilon e_{i}$). Now, $N \otimes_{R} \varepsilon M_{i} \cong \varepsilon M_{i} \cong R \otimes_{R} \varepsilon M_{i}$ as left $\varepsilon A \varepsilon$-modules, and thus $N \cong R$ (N as in (b)). Consequently, $M_{i} \cong A \varepsilon \otimes_{\varepsilon A \varepsilon}$ $\varepsilon M_{i} \in \mathscr{C}(A \varepsilon)$, completing the proof.
2.6 Remarks. Let M be a left A-module such that $\varepsilon M \neq 0$. If M is finitely generated projective over R, then so is εM and we have $t_{\varepsilon M}(\varepsilon x \varepsilon)$ $=t_{M}(\varepsilon x \varepsilon)=t_{M}(x \varepsilon)$ for all $x \in A$. M ore details on trace functions may be found in [3, Sect. 4]. The case where ε is central is less complicated, see also [3, 4.8 and 4.9]. Finally, if A is semisimple, then $\varepsilon A \varepsilon$ is semisimple too, as is well known.

O ne may also apply the preceding results to the following situation.
2.7. Proposition. Let S be a Schur algebra in $R G$ with associated partition $\left\{E_{g} ; g \in G\right\}$. Let H be a subgroup of G such that $|H|^{-1} \in R$ and consider the idempotent $\varepsilon=|H|^{-1} \sum_{h \in H} u_{h}$. If $\varepsilon \in S$ and $\left|E_{g}\right| 1_{R} \neq 0$ for all $g \in G$, then $\varepsilon S \varepsilon$ is a Schur algebra in $R G$ with partition $\left\{H E_{g} H ; g \in G\right\}$. Moreover we have $m|H|^{-2}\left|H E_{g} H\right| 1_{R}=\left|E_{g}\right| 1_{R}$ with $m \in \mathbb{N}$.

Proof. Put $s_{g}=\sum_{x \in E_{g}} u_{x}$ and let G_{0} denote a set of representatives of the distinct E_{g}. Now let ${ }^{g} g \in G_{0}$. Clearly, $\varepsilon s_{g} \varepsilon=\sum_{i=1}^{l} n_{i}\left|H x_{i} H\right|^{-1} H x_{i} H$ with $n_{i} \in \mathbb{N}$, where $x_{i} \in E_{g}$ are representatives of the distinct $\overline{H x H}$, $x \in E_{g}$, and $H x_{i} H=\sum_{y \in H x_{i} H} u_{y}$. Note that $n_{1}+\cdots+n_{l}=\left|E_{g}\right|$. So there is some n_{i} such that $n_{i} 1_{R} \neq 0$, because $\left|E_{g}\right| 1_{R} \neq 0$. Since $\varepsilon \in S$, we have also $\varepsilon s_{g} \varepsilon=\sum_{t \in G_{0}} r_{t} s_{t}$ with $r_{t} \in R\left(r_{t}=m_{t}|H|^{-2} 1_{R}\right.$ with $\left.m_{t} \in \mathbb{N}\right)$.

Comparing these expressions for $\varepsilon s_{g} \varepsilon$, we obtain $n_{i}\left|H x_{i} H\right|^{-1} 1_{R}=r_{g}$ for $i=1, \ldots, l$, whence also $r_{t}=r_{g}$ or $r_{t}=0$. M oreover $r_{g} \neq 0$. Consequently, $\varepsilon s_{g} \varepsilon=r_{g} H E_{g} H$ with $H E_{g} H=\sum_{y \in H E_{g} H} u_{y}$. We also deduce that $\varepsilon s_{g} \varepsilon=$ $r_{g} \sum_{k} s_{k}$ for some $k \in \overline{G_{0}}$, and we conclude that $H E_{g} H=\sum_{k} s_{k}$. Therefore $H E_{g} H \in S \cap \varepsilon R G \varepsilon$, and this intersection is equal to $\varepsilon S \varepsilon$.

N ext, the above discussion shows that for each $g \in G_{0}, H E_{g} H=\cup_{k} E_{k}$ for some $k \in G_{0}$. U sing this, it is easily seen that sets of the form $H E_{g} H$ coincide or are disjoint. M oreover $\left(H E_{g} H\right)^{-1}=H E_{g^{-1}} H$.

Finally, since $n_{1}+\cdots+n_{l}=\left|E_{g}\right|$ and $n_{i}\left|H x_{i} H\right|^{-1} 1_{R}=r_{g}$, we have $\left|H E_{g} H\right| r_{g}=\left|E_{g}\right| 1_{R}$, completing the proof.
2.8. Remark. Proposition 2.7 remains valid if we replace the condition $\left|E_{g}\right| 1_{R} \neq 0$ by the following condition: for any $g, h \in G, E_{g} E_{h}=\cup_{l} E_{l}$ for some $l \in G$. In this case, it follows at once from the hypotheses that $H E_{g} H=\cup_{k} E_{k}$ for some $k \in G$.

We now turn to Schur algebras which are fixed rings of automorphism groups. Let G, H be finite groups and let $\sigma: H \rightarrow \mathrm{Aut}(G)$ be a homomorphism of groups. The orbits $E_{g}=\left\{\sigma_{h}(g) \mid h \in H\right\}, g \in G$, form a partition of $G ; E_{g}^{-1}=E_{g^{-1}}$ and $E_{e}=\{e\}$. Each σ_{h} extends to an R-algebra isomorphism of $R G$ (again denoted by σ_{h}) as follows: $\sigma_{h}\left(\sum_{g} r_{g} u_{g}\right)=$ $\Sigma_{g} r_{g} u_{\sigma_{h}(g)}$, with $g \in G$ and $r_{g} \in R$. Furthermore, $\sigma: H \rightarrow \operatorname{Aut}_{R}(R G)$: $h \stackrel{ }{\mapsto} \sigma_{h}$ is a homomorphism of groups.

Consider the fixed ring $R G^{H}=\left\{a \in R G \mid \forall h \in H: \sigma_{h}(a)=a\right\}$; we have:
2.9. Lemma. Keep the above notation, put $s_{g}=\sum_{x \in E_{g}} u_{x}$ in $R G$, and let G_{0} denote a set of representatives of the distinct E_{g}. Then $R G^{H}=\oplus_{g \in G_{0}} R s_{g}$, i.e., $R G^{H}$ is a Schur algebra in $R G$.

Proof. Clearly $s_{g} \in R G^{H}$. Conversely, let $\sum_{g \in G} r_{g} u_{g} \in R G^{H}, r_{g} \in R$. Then for each $h \in H$ we have $\sum_{g \in G} r_{g} u_{g}=\sum_{g \in G} r_{g} u_{\sigma_{h}(g)}$, whence $r_{\sigma_{k}(g)}=r_{g}$ (for nonzero r_{g}). The result follows at once.

We recall a few facts about fixed rings of automorphism groups. Throughout A is an R-algebra, H a finite group, and $\sigma: H \rightarrow \operatorname{Aut}_{R}(A)$ a homomorphism of groups.
For any $a \in A$, denote by $O(a)$ the orbit $\left\{\sigma_{h}(a) \mid h \in H\right\}$ and set $s(a)=\sum_{x \in O(a)} x$. Clearly, $A^{H}=\left\{a \in A \mid \forall h \in H: \sigma_{h}(a)=a\right\}$ is an R-subalgebra of A containing 1_{A}. M oreover, for any $a \in A$ we have $s(a) \in A^{H}$ as well as $\sum_{h \in H} \sigma_{h}(a) \in A^{H}$. Further, the associated skew group ring is denoted by $A * H$. As a left A-module $A * H$ is freely generated by symbols $\left\{w_{h} \mid h \in H\right\}$ and multiplication is defined by $\left(a w_{h}\right) \cdot\left(b w_{k}\right)=$ $a \sigma_{h}(b) w_{h k}$ for all $a, b \in A, h, k \in H$. Of course $A * H$ is also an R algebra, where the R-module structure is inherited from A.

If $|H|^{-1} \in R$, then we may consider the idempotent $e_{H}=|H|^{-1} \Sigma_{h \in H} w_{h}$ in $A * H$. From [7, Lemma 2.1] we retain:
2.10. Lemma. Assume $|H|^{-1} \in R$. Then $e_{H}(A * H) e_{H}=A^{H} e_{H}$, and $A^{H} e_{H}$ is isomorphic to A^{H} as R-algebra.

Proof. Set $\varepsilon=e_{H}$, and observe that $\left(a w_{e}\right) v=a v$ for all $a \in A, v \in$ $A * H$.

For $a \in A$ and $k \in H$ we have $\varepsilon\left(a w_{k}\right)=|H|^{-1} \sum_{h \in H} \sigma_{h}(a) w_{h k}$. But $w_{t} \varepsilon=\varepsilon$. Therefore $\varepsilon\left(a w_{k}\right) \varepsilon=|H|^{-1} \sum_{h \in H} \sigma_{h}(a) \varepsilon$, and this shows that
$\varepsilon(A * H)_{\varepsilon} \subset A^{H} \mathcal{\varepsilon}$. On the other hand, $a=|H|^{-1} \Sigma_{h \in H} \sigma_{h}(a)$ for all $a \in$ A^{H}, and the equality follows.

U sing the expressions given above, it is easily verified that $A^{H} \rightarrow A^{H_{\varepsilon}}$: $a \mapsto a \varepsilon$ is an isomorphism of R-algebras.

W e may use the preceding lemma to prove:
2.11. Proposition. Let A, H, σ be as before and assume $|H|^{-1} \in R$.
(1) If A is finitely generated and projective as R-module, then so is A^{H}.
(2) Suppose that A is finitely generated projective and faithful as R module. If A is separable over R, then so is A^{H}.

Proof. (1) Let $\left\{a_{1}, \ldots, a_{n}\right\} \subset A,\left\{\varphi_{1}, \ldots, \varphi_{n}\right\} \subset \operatorname{Hom}_{R}(A, R)$ be a dual basis for A. Then it is easily checked that $\left\{|H|^{-1} \sum_{h \in H} \sigma_{h}\left(a_{i}\right)\right\},\left\{\left.\varphi_{i}\right|_{A^{H}}\right\}$ is a dual basis for A^{H}.
(2) Let $\sum_{i=1}^{m} x_{i} \otimes y_{i} \in A \otimes_{R} A^{0}$ be a separability idempotent for A. Then it is easily verified that $|H|^{-1} \sum_{h \in H} \sum_{i=1}^{m}\left(\sigma_{h}\left(x_{i}\right) w_{h} \otimes y_{i} w_{h^{-1}}\right)$ is a separability idempotent for $A * H$. So $A * H$ is separable over R. M oreover, $A * H$ is finitely generated projective as R-module. We now apply Lemma 2.10 and Proposition 2.1. 【

Let us return to the case where $A=R G$ and H acts on G. Then $A * H$ is isomorphic to $R\left(G \times_{\sigma} H\right)$ as R-algebra, where $G \times_{\sigma} H$ is the semidirect product of G and H (i.e., $\left(g_{1}, h_{1}\right) \cdot\left(g_{2}, h_{2}\right)=\left(g_{1} \sigma_{h_{1}}\left(g_{2}\right), h_{1} h_{2}\right)$ for $g_{i} \in G, h_{i} \in H$). The isomorphism maps $u_{g} w_{h} \in A * H$ onto (g, h) for any $g \in G, h \in H$.

In case $|H|^{-1} \in R$, the algebra $R G^{H}$ is isomorphic to a double coset algebra in $R\left(G \times_{\sigma} H\right)$, see Lemma 2.10. Furthermore we have:
2.12. Proposition. (1) If $|H|$ and $|G|$ are invertible in R, then $R G^{H}$ is separable over R.
(2) Suppose R is connected, and $|H|$ and $|G|$ are invertible in R. If R is a splitting ring for $R\left(G \times_{\sigma} H\right)$, then R is a splitting ring for $R G^{H}$.

In particular, let m be the exponent of $G \times_{\sigma} H$ and η a primitive mth root of unity. Then $L=R[\eta]$ is a splitting ring for $L G^{H}$.

Proof. (1) We know that $|G|^{-1} \in R$ implies that $R G$ is separable over R, and we may apply Proposition 2.11(2).
(2) The first statement follows from Lemma 2.10 and Proposition 2.5(3). The second part follows from [12].

Next we deal with indecomposable modules. Connections between $R G^{H}$-modules and $R\left(G \times_{\sigma} H\right)$-modules are given by the theory of double coset algebras, developed in the first part of this section. We now investigate the relationship between indecomposable $R G^{H}$-modules and inde-
composable $R G$-modules. We return to the general situation where A is an R-algebra, H a finite group, and $\sigma: H \rightarrow \operatorname{Aut}_{R}(A)$ a homomorphism of groups. We require the following definition.
2.13. Definition. Let M be a left A-module and let $h \in H$. We obtain a left A-module ${ }^{h} M$ as follows: consider the underlying abelian group of M and let A act on it by setting $a \circ m=\sigma_{h}^{-1}(a) m$ for all $a \in A$, $m \in M$.

O bserve that the induced R-module structure on ${ }^{h} M$ coincides with that on M.
2.14. Remarks. (1) Let M, N be left A-modules and let $h, k \in H$. Then ${ }^{k}\left({ }^{h} M\right)={ }^{k h} M$ as A-modules, and $\operatorname{Hom}_{A}\left({ }^{h} M,{ }^{h} N\right)=\operatorname{Hom}_{A}(M, N)$.
(2) Let M be a left A-module which is finitely generated and projective over R. For the trace functions we get $t_{h_{M}}(a)=t_{M}\left(\sigma_{h}^{-1}(a)\right)$ for all $a \in A, h \in H$.
(3) If M is an indecomposable, resp. a finitely generated projective, left A-module, then so is ${ }^{h} M$ for all $h \in H$.
(4) Suppose that R is connected and that A is finitely generated and projective as R-module. Let $\left\{e_{1}, \ldots, e_{q}\right\}$, resp. $\left\{d_{1}, \ldots, d_{m}\right\}$, be the set of primitive central nonzero idempotents of A, resp. A^{H} (use rank ${ }_{R}$). Then H acts on $\left\{e_{1}, \ldots, e_{q}\right\}$ by σ. A gain, let $s\left(e_{i}\right)$ denote the sum of the idempotents in the orbit of e_{i}. Each $s\left(e_{i}\right)$ is uniquely expressible as a sum of d_{j} 's, and each d_{j} appears in one and only one of the $s\left(e_{i}\right)$. Note also that d_{j} appears in $s\left(e_{i}\right)$ if and only if $d_{j} e_{i} \neq 0$.
(5) Let R, A, e_{i}, d_{j} be as in (4), and let M be an indecomposable left A-module lying over e_{i}. We observe that ${ }^{h} M$ lies over $\sigma_{h}\left(e_{i}\right), h \in H$.

Further, it is clear that $d_{j} e_{i}=0$ implies $d_{j} M=0$. M oreover, if M is finitely generated projective over A and if any two indecomposable finitely generated projective left A-modules lying over the same primitive central idempotent are isomorphic as A-modules, then the converse is true. Indeed, suppose $d_{j} M=0$ and write $e_{i}=\eta_{1}+\cdots+\eta_{t}, \eta_{k}$ being primitive idempotents of A. Then $d_{j} A \eta_{k}=0$ for $k=1, \ldots, t$, whence $d_{j} e_{i}=0$.

Note also that $\left.M\right|_{A^{H}}$ is the direct sum of the nonzero $d_{j} M$.
2.15. Theorem. Suppose that R is connected and that A is finitely generated and projective as R-module. Let P be an indecomposable left A^{H}-module, and let e be a primitive central idempotent of A such that $e\left(A \otimes_{A^{H}} P\right) \neq 0$. Set $W=e\left(A \otimes_{A^{H}} P\right)$ and $F=\left\{h \in H \mid \sigma_{h}(e)=e\right\}$. Then
(1) $A \otimes_{A^{H}} P \cong \oplus_{i=1}^{r}{ }^{h_{i}} W$ as left A-modules, where $\left\{h_{1}, \ldots, h_{r}\right\}$ is a set of left coset representatives of F in H.

Moreover, $F=\left\{\left.h \in H\right|^{h} W \cong W\right.$ as A-modules $\}$.
(2) If P is finitely generated and projective over A^{H}, then we may write $A \otimes_{A^{H}} P=M_{1} \oplus \cdots \oplus M_{s}$ where each M_{i} is an indecomposable left A module. In this case W is the direct sum of all M_{i} lying over e.

Proof. (1) Let $\left\{e=e_{1}, \ldots, e_{t}\right\}$ be the set of all primitive central idempotents of A for which $e_{j}\left(A \otimes_{A^{H}} P\right) \neq 0$, and set $W_{j}=e_{j}\left(A \otimes_{A^{H}} P\right)$. Then $A \otimes_{A^{H}} P=W_{1} \oplus \cdots \oplus W_{t}\left(W=W_{1}\right)$.

Further, let d denote the primitive central idempotent of A^{H} for which $d P \neq 0$. Then $e_{j}\left(A \otimes_{A^{H}} P\right) \neq 0$ implies $e_{j} d \neq 0$. By Remark 2.14(4), it follows that e_{1}, \ldots, e_{t} belong to the same orbit (of the action of H).

Now let $h \in H$. We observe that $A \otimes_{A^{H}} P \rightarrow^{h}\left(A \otimes_{A^{H}} P\right): \sum_{i} a_{i} \otimes p_{i} \rightarrow$ $\sum_{i} \sigma_{h}^{-1}\left(a_{i}\right) \otimes p_{i}$ is an isomorphism of left A-modules. Thus $\sigma_{h}(e)\left(A \otimes_{A^{H}} P\right)$ $\cong \sigma_{h}(e) \circ{ }^{h}\left(A \otimes_{A^{H}} P\right)={ }^{h} W \neq 0$ as A-modules. This yields $\sigma_{h}(e)=e_{j}$ for some $j \in\{1, \ldots, t\}$.

M oreover we obtain $W_{j} \cong^{h} W$. Furthermore, if $\sigma_{h}(e)=e$, then $W \cong{ }^{h} W$. The converse follows from the fact that $e W=W$ and $\sigma_{h}(e){ }^{h} W={ }^{h} W$.
(2) It is clear that $A \otimes_{A^{H}} P$ is nonzero, finitely generated, and projective over A, hence also over R, and use rank ${ }_{R}$.
From the proof it follows that $e_{j}\left(A \otimes_{A^{H}} P\right) \neq 0$ if and only if $A \otimes_{A^{H}} P$ $\neq 0$ and $e_{j} d \neq 0$.
A s an immediate consequence of Theorem 2.15, we obtain:
2.16. Corollary. Keep the hypotheses and notation of Theorem 2.15(2), and suppose that any two indecomposable finitely generated projective left A-modules lying over the same primitive central idempotent are isomorphic as A-modules.

Then $\left.A \otimes_{A^{H}} P \cong \oplus_{i=1}^{r} 1^{\left(h_{i}\right.} M\right)^{k}$ as A-modules, where M is an indecomposable finitely generated projective left A-module lying over e and $k \in \mathbb{N}$. Moreover $\sigma_{h}(e)=e$ if and only if ${ }^{h} M \cong M$.

Let $\operatorname{Inn}(A)$ denote the group of inner automorphisms of A. As a special case we now obtain:
2.17. Corollary. Suppose $\sigma(H) \subset \operatorname{Inn}(A)$. Then we have $A \otimes_{A^{H}} P$ $=W$ in Theorem 2.15, and we have $A \otimes_{A^{H}} P \cong M^{k}$ in Corollary 2.16.
Note. Suppose that $\sigma(H) \subset \operatorname{Inn}(A)$. Let U denote the group of invertible elements of A and consider $j: U \rightarrow \operatorname{Inn}(A): u \rightarrow j_{u}$ with $j_{u}(a)=u a u^{-1}$ for all $a \in A$. Take the subgroup $L=j^{-1}(\sigma(H))$ of U and restrict j to L. Then $A^{H}=A^{L}$ and A^{L} is the centralizer in A of the R-subalgebra generated by L.

To conclude, let us return to Schur algebras. So let G, H be finite groups, let $\sigma: H \rightarrow \mathrm{Aut}(G)$ be a homomorphism of groups, and suppose that $\sigma(H) \subset \operatorname{Inn}(G)$. Consider $i: G \rightarrow \operatorname{Inn}(G): g \mapsto i_{g}$ with $i_{g}(x)=g x g^{-1}$ for all $x \in G$. In this case, we take the subgroup $K=i^{-1}(\sigma(H))$ of G and
we restrict i to K. Extending to automorphisms of $R G$, we get $R G^{H}=$ $R G^{K}$. Now, for any subgroup K of G and homomorphism $i: K \rightarrow \operatorname{Inn}(G)$, we see that $R G^{K}$ is the centralizer of $R K$ in $R G$. Further results on modules over centralizers can be found in [10, 3].

3. SYMMETRIC FUNCTIONS ON FROBENIUS ALGEBRAS

Throughout, R is a commutative ring and A is a faithful R-algebra which is a finitely generated free R-module. R ecall that $A^{*}=\operatorname{Hom}_{R}(A, R)$ is a left A-module under the operation $(a . f)(x)=f(x a)$ for $a, x \in A$, $f \in A^{*}$.
3.1. Remarks. An R-bilinear form on A is called associative if $b(x y, v)$ $=b(x, y v)$ for all $x, y, v \in A$. As is well known, there is a one-to-one correspondence between associative R-bilinear forms $b: A \times A \rightarrow R$ and (left) A-linear maps $\beta: A \rightarrow A^{*}$, given by $b(x, y)=\beta(y)(x), x, y \in A$.

On the other hand, an A-linear map $\beta: A \rightarrow A^{*}$ is completely determined by $\beta(1)=\tau$, and the above correspondence yields $b(x, y)=$ $\tau(x y), x, y \in A$.
3.2. Lemma. Let b be an associative R-bilinear form on A, let β : $A \rightarrow A^{*}$ be the corresponding left A-linear map, and $\tau=\beta(1)$. The following statements are equivalent:
(1) There are R-bases $\left\{a_{1}, \ldots, a_{n}\right\},\left\{b_{1}, \ldots, b_{n}\right\}$ in A such that $b\left(a_{i}, b_{j}\right)$ form an invertible matrix.
(2) For each R-basis $\left\{a_{1}, \ldots, a_{n}\right\}$ of A there exists an R-basis $\left\{b_{1}, \ldots, b_{n}\right\}$ of A with $b\left(a_{i}, b_{j}\right)=\delta_{i j}$.
(3) β is an isomorphism.
(4) For every $f \in A^{*}$ there is a unique $a \in A$ such that $f=a \cdot \tau$.

Proof. This is straightforward; see also [3, Lemma 3.1].
A bilinear form satisfying property (2) is said to be nonsingular, and $\left\{a_{k}\right\},\left\{b_{k}\right\}$ in (2) are called dual bases with respect to b. The R-algebra A is called a Frobenius algebra if there exists a nonsingular associative R-bilinear form on A.

N ow let τ, f, a be as in Lemma 3.2(4); then it is easily seen that f is also a free generator of A^{*} viewed as a left A-module if and only if a is invertible in A. Furthermore, we have:
3.3. Lemma. Let b be a nonsingular associative R-bilinear form on A with dual bases $\left\{a_{1}, \ldots, a_{n}\right\},\left\{b_{1}, \ldots, b_{n}\right\}$, and let $\beta: A \rightarrow A^{*}$ be the corresponding left A-linear map. Then $\beta^{-1}: A^{*} \rightarrow A$ is given by $\beta^{-1}(f)=\sum_{i=1}^{n} f\left(a_{i}\right) b_{i}$.

Proof. We have $\beta\left(\sum_{i} f\left(a_{i}\right) b_{i}\right)\left(a_{j}\right)=b\left(a_{j}, \sum_{i} f\left(a_{i}\right) b_{i}\right)=f\left(a_{j}\right)$.

Recall that $f \in A^{*}$ is said to be symmetric if $f(x y)=f(y x)$ for all $x, y \in A$. The set of all symmetric functions $f \in A^{*}$ will be denoted by $\operatorname{Sym}(A, R)$. The A-module structure on A^{*} makes $\operatorname{Sym}(A, R)$ into a $Z(A)$-module, where $Z(A)$ denotes the center of A.

Furthermore, we say that A is a symmetric Frobenius algebra if there exists a nonsingular associative R-bilinear form on A which is symmetric.
3.4. Lemma. Let b be a nonsingular symmetric associative R-bilinear form on A, and let $\beta: A \rightarrow A^{*}$ be the corresponding left A-linear map. Then β induces an isomorphism of $Z(A)$-modules between $Z(A)$ and $\operatorname{Sym}(A, R)$.

Proof. Let $\tau=\beta(1) ; \tau$ is symmetric. Obviously, if $a \in Z(A)$, then $\beta(a)=a \cdot \tau$ is symmetric. Now let $f \in \operatorname{Sym}(A, R)$, hence $f=a . \tau$ for some $a \in A$. From $f(y x)=f(x y)$ it follows that $\tau(y x a)=\tau(x y a)=\tau(y a x)$, for all $x, y \in A$. Therefore $x a . \tau=a x . \tau$, whence $x a=a x$, for all $x \in A$.
3.5. Examples. (1) Let G be a finite group and consider the twisted group ring $R *_{\alpha} G$ with R-basis $\left\{u_{g} \mid g \in G\right\}$. Consider the R-linear map τ : $R *_{\alpha} G \rightarrow R: \sum_{g \in G} r_{g} u_{g} \mapsto r_{e}$. It is clear that τ defines a symmetric associative R-bilinear form on $R *_{\alpha} G$ with dual bases $\left\{u_{g} \mid g \in G\right\}$, $\left\{\alpha\left(g, g^{-1}\right)^{-1} u_{g^{-1}} \mid g \in G\right\}$ (α is 2-cocycle).
(2) Let G be a finite group, let $\left\{E_{g} ; g \in G\right\}$ be a partition of G such that $E_{g}^{-1}=E_{g^{-1}}$, and let G_{0} denote a set of representatives of the distinct E_{g}. Put $s_{g}=\sum_{x \in E_{g}} u_{x}$ in $R G$ and suppose that $S=\oplus_{g \in G_{0}} R s_{g}$ is a Schur algebra in $R G$.

N ow consider $\tau: S \rightarrow R: \sum_{g \in G_{0}} r_{g} s_{g} \rightarrow r_{e}$. If each $\left|E_{g}\right|$ is invertible in R, then τ defines a symmetric associative R-bilinear form on S with dual bases $\left\{s_{g} \mid g \in G_{0}\right\}$, $\left\{\left|E_{g}\right|^{-1} s_{g^{-1}} \mid g \in G_{0}\right\}$.
(3) For some other examples we refer to [3, 3.8].

Now let b be a nonsingular associative R-bilinear form on A with dual bases $\left\{a_{1}, \ldots, a_{n}\right\},\left\{b_{1}, \ldots, b_{n}\right\}$. Consider the $Z(A)$-linear map $\zeta: A \rightarrow A$: $x \mapsto \sum_{i=1}^{n} b_{i} x a_{i}$. We have:
3.6. Proposition. (1) $\zeta(x)$ is independent of the choice of the dual bases and $\zeta(A)$ is independent of the choice of the nonsingular associative bilinear form.
(2) $\quad \zeta(A)$ is an ideal of the center $Z(A)$ of A.
(3) A is a separable R-algebra if and only if $1 \in \zeta(A)$.
(4) If b is symmetric, then $\zeta(x y)=\zeta(y x)$ for all $x, y \in A$.

Proof. Parts (1) and (2) follow from [3, Proposition 3.6] and (3) follows from [3, Propositions 3.7 and 3.10]. As for (4), $\left\{b_{i}\right\},\left\{a_{i}\right\}$ are dual bases with respect to b, i.e., $b\left(b_{j}, a_{i}\right)=\delta_{i j}$, because b is symmetric. Then by (1),
$\zeta(x y)=\sum_{i=1}^{n} a_{i} x y b_{i}$. Now for each $x \in A$, we have

$$
a_{i} x=\sum_{j=1}^{n} r_{j i} a_{j} \text { implies } \quad x b_{i}=\sum_{j=1}^{n} r_{i j} b_{j}, \quad r_{j i} \in R .
$$

U sing these relations, we obtain $\zeta(x y)=\zeta(y x)$.
K eep the above notation and put $z=z_{b}=\sum_{i=1}^{n} a_{i} b_{i}$.
It is easily verified (see [3, 3.4]) that $b(x, z)=t_{A}(x)$ for all $x \in A$, where t_{A} denotes the trace function from A to R afforded by A viewed as left A-module. In other words, $t_{A}=z . \tau$ where $\tau \in A^{*}$ is associated to b as in Remarks 3.1.
A s a consequence, we obtain that z is independent of the choice of the dual bases for b. Moreover, if b is symmetric, then z is central and $z=\sum_{i=1}^{n} b_{i} a_{i}=\zeta(1)$. Furthermore, if b^{\prime} is another nonsingular associative R-bilinear form on A, then we can find an invertible element $u \in A$ such that $z_{b}=z_{b}, u$.
The invertibility of z has been investigated in [3]. In particular, if R is a field of characteristic zero and A is separable over R, then z is invertible in A. Here we give an additional result on invertibility. We shall need the $Z(A)$-module ker ζ. Clearly ker ζ is independent of the choice of the dual bases for b and, in case b is symmetric, $\operatorname{ker} \zeta$ is also independent of the choice of the nonsingular symmetric form.
3.7. Proposition. Keep the above notation and assumptions and suppose that b is symmetric. Then the following statements are equivalent:
(1) z is invertible in A.
(2) A is separable over R and $A=\operatorname{ker} \zeta \oplus Z(A)$.

Proof. Note that $\zeta(c)=z c$ for all $c \in Z(A)$.
(1) \Rightarrow (2). Clearly $\zeta\left(z^{-1}\right)=1$, hence $\zeta(A)=Z(A)$ and A is separable over R, see Proposition 3.6. For each $x \in A$, we write $x=\left(x-\zeta\left(z^{-1} x\right)\right)$ $+\zeta\left(z^{-1} x\right)$, and then it is easily checked that $A=\operatorname{ker} \zeta \oplus \zeta(A)$.
$(2) \Rightarrow(1)$. By the separability, we have $1=\zeta(x)$ for some $x \in A$. There exist elements $y_{1} \in \operatorname{ker} \zeta, y_{2} \in Z(A)$ such that $x=y_{1}+y_{2}$. Thus $1=\zeta\left(y_{2}\right)=z y_{2}$.

Next we show that, under certain conditions, symmetric functions are determined by their values on the center. A gain let A be a Frobenius algebra, let b be a nonsingular associative R-bilinear form on A with dual bases $\left\{a_{i}\right\},\left\{b_{i}\right\}$, and let ζ, z be as before.
3.8. Proposition. Assume that b is symmetric and that z is invertible in A. Given $f \in A^{*}$, the following conditions are equivalent:
(1) $f \in \operatorname{Sym}(A, R)$.
(2) $f(x)=f\left(\zeta\left(z^{-1} x\right)\right)$ for all $x \in A$.
(3) $\operatorname{ker} \zeta \subset \operatorname{ker} f$.

Proof. (1) \Rightarrow (2). We have $f\left(\zeta\left(z^{-1} x\right)\right)=f\left(\sum_{i} b_{i} z^{-1} x a_{i}\right)=$ $f\left(\sum_{i} a_{i} b_{i} z^{-1} x\right)=f(x)$.
(2) \Rightarrow (3). N ote that $\zeta\left(z^{-1} x\right)=z^{-1} \zeta(x)$.
(3) \Rightarrow (1). For all $x, y \in A$, we have $\zeta(x y)=\zeta(y x)$, hence $x y-y x \in$ $\operatorname{ker} \zeta \subset \operatorname{ker} f$.
3.9. Proposition. Let b, ζ, z be as before and suppose that b is symmetric. Then $\bigcap_{f} \operatorname{ker} f \subset \operatorname{ker} \zeta$ where f ranges over all elements of $\operatorname{Sym}(A, R)$. If z is invertible in A, then we get an equality.

Proof. Let $\tau \in A^{*}$ be associated to b as in Remarks 3.1. Let $x \in A$ be such that $f(x)=0$ for all $f \in \operatorname{Sym}(A, R)$. Then by Lemma 3.4, $\tau(x c)=0$ for all $c \in Z(A)$. For each $y \in A$, we now have $\tau(y \zeta(x))=\tau\left(\sum_{i} y b_{i} x a_{i}\right)$ $=\tau\left(\sum_{i} a_{i} y b_{i} x\right)=\tau(\zeta(y) x)=0$ using Proposition 3.6. Thus $\zeta(x) . \tau=0$, whence $\zeta(x)=0$.

In case z is invertible, we may apply Proposition 3.8 and we obtain an equality.
We now show that, under certain conditions, $\operatorname{Sym}(A, R)$ has an R-basis consisting of characters and we derive orthogonality relations for characters. A gain let A be a Frobenius R-algebra, let b be a nonsingular associative R-bilinear form on A with dual bases $\left\{a_{1}, \ldots, a_{n}\right\},\left\{b_{1}, \ldots, b_{n}\right\}$, and put $z=\sum_{i=1}^{n} a_{i} b_{i}$. M oreover we assume that b is symmetric, although some results can be proved without this assumption. Further, suppose that R is connected and let $\left\{e_{1}, \ldots, e_{q}\right\}$ be the set of primitive central nonzero idempotents of A. Let now M_{1}, \ldots, M_{q} be nonzero left A-modules which are finitely generated and projective over R, and assume that $e_{k} M_{i}=0$ for $k \neq i$. Note that an indecomposable A-module P lies over exactly one e_{i}. Finally, we let rank stand for rank ${ }_{R}$, and we recall that $t_{M_{i}}$ denotes the trace function from A to R afforded by M_{i}.
3.10. Theorem. Keep the above hypotheses and notation.
(1) If R is a splitting ring for the center, that is, $Z(A)=R e_{1} \oplus \cdots \oplus$ $R e_{q}$, then

$$
\begin{aligned}
\operatorname{rank}\left(M_{j}\right) e_{j} & =b\left(e_{j}, e_{j}\right) \sum_{i=1}^{n} t_{M_{j}}\left(a_{i}\right) b_{i} \\
t_{M_{j}}(z) e_{j} & =\operatorname{rank}\left(A e_{j}\right) \sum_{i=1}^{n} t_{M_{j}}\left(a_{i}\right) b_{i} .
\end{aligned}
$$

(2) For $j \neq k$ we have $\sum_{i=1}^{n} t_{M_{j}}\left(a_{i}\right) t_{M_{k}}\left(b_{i}\right)=0$.
(3) Let L_{j} be any nonzero left A-module which is finitely generated projective over R and has the property that $e_{k} L_{j}=0$ for $k \neq j$ (special case: $L_{j}=M_{j}$). If R is a splitting ring for $Z(A)$, then

$$
b\left(e_{j}, e_{j}\right) \sum_{i=1}^{n} t_{M_{j}}\left(a_{i}\right) t_{L_{j}}\left(b_{i}\right)=\operatorname{rank}\left(M_{j}\right) \operatorname{rank}\left(L_{j}\right) 1_{R} .
$$

(4) With assumptions as in (3) we have

$$
\operatorname{rank}\left(M_{j}\right) t_{L_{j}}=\operatorname{rank}\left(L_{j}\right) t_{M_{j}} .
$$

(5) If $\operatorname{rank}\left(M_{i}\right) 1_{R} \neq 0$ and $\operatorname{rank}\left(M_{i}\right) 1_{R}$ is not a zero divisor in R for $i=1, \ldots, q$, then $t_{M_{1}}, \ldots, t_{M_{q}}$ are linearly independent over R.
(6) If R is a splitting ring for $Z(A)$ and $\operatorname{rank}\left(M_{i}\right) 1_{R}$ is invertible in R for $i=1, \ldots, q$, then $t_{M_{1}}, \ldots, t_{M_{q}}$ form an R-basis of $\operatorname{Sym}(A, R)$.
(7) We have

$$
z e_{j}=\sum_{i=1}^{n} t_{A e_{j}}\left(a_{i}\right) b_{i}
$$

(8) If R is a splitting ring for $Z(A)$ and z is invertible in A, then $t_{A e_{1}}, \ldots, t_{A e_{q}}$ form an R-basis of $\operatorname{Sym}(A, R)\left(A e_{i}\right.$ viewed as left A-module $)$.

Proof. Let $\tau \in A^{*}$ be associated to b as in Remarks 3.1. For each $t_{M_{j}}$ there is a unique $c_{j} \in A$ such that $t_{M_{j}}=c_{j} . \tau$. By Lemma 3.3, $c_{j}=$ $\sum_{i=1}^{n} t_{M_{j}}\left(a_{i}\right) b_{i}$.

Further, it is easily seen that $e_{k} \cdot t_{M_{j}}=0$ for $k \neq j$. Consequently $\left(e_{k} c_{j}\right) . \tau=0$, whence $e_{k} c_{j}=0$ for $k \neq j$. Therefore $c_{j} \in A e_{j}$.
(1) Since b is symmetric, $c_{j} \in Z(A)$, see Lemma 3.4. Thus $c_{j}=r_{j} e_{j}$ with $r_{j} \in R$. We now have $t_{M_{j}}(1)=\tau\left(c_{j}\right)=r_{j} \tau\left(e_{j}\right)$ and $t_{M_{j}}(1)=\operatorname{rank}\left(M_{j}\right) 1_{R}$. Then rank $\left(M_{j}\right) e_{j}=\tau\left(e_{j}\right) c_{j}$ and we obtain the first formula.

Further, we know that $t_{A}=z . \tau$. Using the fact that $t_{A}=\sum_{i=1}^{q} t_{A e_{i}}$ on A, it is easily seen that $t_{A e_{j}}=e_{j} \cdot t_{A}$ (we view A and $A e_{i}$ as left A-modules). We thus obtain $t_{A e_{j}}=\left(e_{j} z\right)$. τ. Since b is symmetric, z is central and thus $z=\sum_{i=1}^{q} \lambda_{i} e_{i}$ with $\lambda_{i} \in R$. Therefore $t_{A e_{j}}=\left(\lambda_{j} e_{j}\right) . \tau$. As a consequence, we have $\operatorname{rank}\left(A e_{j}\right) 1_{R}=\lambda_{j} \tau\left(e_{j}\right)$. On the other hand, $t_{M_{j}}(z)=\operatorname{rank}\left(M_{j}\right) \lambda_{j}$. We now have $t_{M}(z) e_{j}=\operatorname{rank}\left(M_{j}\right) \lambda_{j} e_{j}=\lambda_{j} \tau\left(e_{j}\right) c_{j}=\operatorname{rank}\left(A e_{j}\right) c_{j}$ and this gives the second formula.
(2) A pply $t_{M_{k^{\prime}}} k \neq j$, to the expression $c_{j}=\sum_{i=1}^{n} t_{M_{j}}\left(a_{i}\right) b_{i}$.
(3) A pply $t_{L_{j}}$ to the first formula in (1).
(4) There is a unique $c_{j}^{\prime} \in A$ such that $t_{L_{j}}=c_{j}^{\prime} . \tau$, and $c_{j}^{\prime}=r_{j}^{\prime} e_{j}$ with $r_{j}^{\prime} \in R$. M oreover, $\operatorname{rank}\left(L_{j}\right) 1_{R}=r_{j}^{\prime} \tau\left(e_{j}\right)$.

Let c_{j}, r_{j} be as above. Then we have $c_{j} \cdot t_{L_{j}}=c_{j}^{\prime} \cdot t_{M_{j}}$ and thus $r_{j} t_{L_{j}}=$ $r_{j}^{\prime} t_{M_{j}}$. M ultiplying by $\tau\left(e_{j}\right)$, we obtain the formula in (4).
(5) Suppose that $\sum_{i=1}^{q} \mu_{i} t_{M_{i}}=0$ with $\mu_{i} \in R$. Then $\sum_{i} \mu_{i} t_{M_{i}}\left(e_{k}\right)=0$ for $k=1, \ldots, q$. We get rank $\left(M_{k}\right) \mu_{k}=0$, whence $\mu_{k}=0$ for $k=1, \ldots, q$.
(6) A s before, we have $t_{M_{j}}=\left(r_{j} e_{j}\right) . \tau$ with $r_{j} \in R$. The invertibility of $\operatorname{rank}\left(M_{j}\right)$ in R implies the invertibility of r_{j} in R, because $\operatorname{rank}\left(M_{j}\right) 1_{R}$ $=r_{j} \tau\left(e_{j}\right)$. Now, e_{1}, \ldots, e_{q} form an R-basis of $Z(A)$, and thus also $r_{1} e_{1}, \ldots, r_{q} e_{q}$. By Lemma 3.4, it follows that $t_{M_{1}}, \ldots, t_{M_{q}}$ form an R-basis of $\operatorname{Sym}(A, R)$.
(7) A s in the proof of (1), $t_{A e_{j}}=\left(z e_{j}\right) \cdot \tau$. The assertion follows from Lemma 3.3.
(8) We have $z=\sum_{i=1}^{q} \lambda_{i} e_{i}$ with $\lambda_{i} \in R$ and $t_{A e_{j}}=\left(\lambda_{j} e_{j}\right)$. τ. Since z is invertible in A, each λ_{i} is invertible in R. We now proceed as in (6) in order to show that $t_{A e_{1}}, \ldots, t_{A e_{q}}$ form an R-basis of $\operatorname{Sym}(A, R)$. 【
3.11. Remarks. K eep the hypotheses and notation of Theorem 3.10 and assume that R is a splitting ring for $Z(A)$.
(1) From the proof of Theorem 3.10 we retain that $\operatorname{rank}\left(M_{j}\right) 1_{R}=$ $r_{j} b\left(e_{j}, e_{j}\right)$ with $r_{j} \in R$. Further, $z=\sum_{i=1}^{q} \lambda_{i} e_{i}$ with $\lambda_{i} \in R$ and $t_{A e_{j}}=$ ($\lambda_{j} e_{j}$). τ, in particular rank $\left(A e_{j}\right) 1_{R}=\lambda_{j} b\left(e_{j}, e_{j}\right)$.
(2) If $b\left(e_{i}, e_{i}\right)$ is invertible in R for $i=1, \ldots, q$, then $b: Z(A) \times$ $Z(A) \rightarrow R$ is nonsingular. The converse also holds.
(3) For all $x \in A$ we have $t_{M_{i}}(x) z e_{j}=\operatorname{rank}\left(M_{j}\right) \zeta(x) e_{j}=t_{M_{i}}(\zeta(x)) e_{j}$. Indeed, we may write $z=\sum_{i=1}^{q} \lambda_{i} e_{i}$ and $\zeta(x)=\sum_{i=1}^{q} \mu_{i} e_{i}$. Clearly, $t_{M_{j}}(\zeta(x))=\operatorname{rank}\left(M_{j}\right) \mu_{j}$. On the other hand, $t_{M_{j}}(\zeta(x))=t_{M_{j}}\left(\sum_{i=1}^{n} b_{i} x a_{i}\right)=$ $t_{M_{j}}(z x)=\lambda_{j} t_{M_{j}}(x)$.

As before, let b be a nonsingular symmetric associative R-bilinear form on A with dual bases $\left\{a_{1}, \ldots, a_{n}\right\},\left\{b_{1}, \ldots, b_{n}\right\}$, and put $z=\sum_{i=1}^{n} a_{i} b_{i}$. Suppose that R is connected and let $\left\{e_{1}, \ldots, e_{q}\right\}$ be the set of primitive central nonzero idempotents of A. We now assume that $A \cong \mathrm{End}_{R}\left(P_{1}\right)$ $\oplus \cdots \oplus \mathrm{End}_{R}\left(P_{q}\right)$ as R-algebras, P_{1}, \ldots, P_{q} being finitely generated projective R-modules.

O bserve that $Z(A)=R e_{1} \oplus \cdots \oplus R e_{q}$. We recall that each P_{i} is an indecomposable left A-module under the operation $\left(\varphi_{1}, \ldots, \varphi_{q}\right) \cdot p=$ $\varphi_{i}(p), p \in P_{i}$, and $\varphi_{j} \in \mathrm{End}_{R}\left(P_{j}\right)$, and we may assume that P_{i} lies over e_{i}. All indecomposable left A-modules and their characters are described in [9, 1.8 and 2.2].

Further, from the proof of Theorem 3.13 in [3] we retain that $t_{A e_{j}}=$ $\operatorname{rank}\left(P_{j}\right) t_{P_{j}}$ on A, in particular rank $\left(A e_{j}\right)=\left(\operatorname{rank} P_{j}\right)^{2}$.

Clearly we may apply Theorem 3.10 to $t_{P_{i}}$. M oreover the following holds true.
3.12. Proposition. Keep the above hypotheses and notation. Then
(1) We have

$$
\begin{aligned}
z e_{j} & =\sum_{i=1}^{n} \operatorname{rank}\left(P_{j}\right) t_{P_{j}}\left(a_{i}\right) b_{i} \\
t_{P_{j}}(z) & =\sum_{i=1}^{n} \operatorname{rank}\left(P_{j}\right) t_{P_{j}}\left(a_{i}\right) t_{P_{j}}\left(b_{i}\right) .
\end{aligned}
$$

(2) z is invertible in A if and only if all $\operatorname{rank}\left(P_{j}\right) 1_{R}$ are invertible in R. Moreover, $\operatorname{rank}\left(P_{j}\right) 1_{R}$ is invertible in R if and only if $t_{P_{j}}(z)$ is invertible in R.

Proof. (1) We have $t_{A e_{j}}=\operatorname{rank}\left(P_{j}\right) t_{P_{j}}$. The first formula now follows from Theorem 3.10(7). A pplying $t_{P^{\prime}}$, we obtain the second formula.
(2) Let $\tau \in A^{*}$ be associated to b. There is a unique $c_{j} \in A$ such that $t_{P_{j}}=c_{j} . \tau$ and $c_{j} \in A e_{j}$. Then $t_{A e_{j}}=\operatorname{rank}\left(P_{j}\right) t_{P_{j}}=\operatorname{rank}\left(P_{j}\right) c_{j} . \tau$. On the other hand, we know that $t_{A e_{j}}=\left(z e_{j}\right) . \tau$, see Theorem 3.10. Therefore $z e_{j}=\operatorname{rank}\left(P_{j}\right) c_{j}$ and thus $z=\left(\sum_{j} \operatorname{rank}\left(P_{j}\right) e_{j}\right)\left(\sum_{j} c_{j}\right)$. So the invertibility of z implies that all $\operatorname{rank}\left(P_{j}\right)$ are invertible in R. To prove the converse, we write $z=\sum_{i=1}^{q} \lambda_{i} e_{i}$ with $\lambda_{i} \in R$ and we observe that (rank $\left.P_{j}\right)^{2} 1_{R}=$ $\operatorname{rank}\left(A e_{j}\right) 1_{R}=\lambda_{j} b\left(e_{j}, e_{j}\right)$, see Remarks 3.11.

The last statement follows from $t_{P_{j}}(z)=\operatorname{rank}\left(P_{j}\right) \lambda_{j}$ and the preceding formula.
3.13. Remarks. (1) We do not need the fact that b is symmetric in the proofs of Theorem 3.10(2)-(5)-(7) and Proposition 3.12(1), and in the proof of the implication: z invertible $\Rightarrow \operatorname{rank}\left(P_{j}\right) 1_{R}$ invertible.
(2) We recover the special case considered in [2, 9.17].
3.14. Examples. (1) As in Example 3.5(1), let $A=R *_{\alpha} G$ with bilinear form associated to $\tau: A \rightarrow R: \sum_{g \in G} r_{g} u_{g} \mapsto r_{e}$. In this case $\left\{u_{g}\right\},\left\{\alpha\left(g, g^{-1}\right)^{-1} u_{g^{-1}}\right\}, \quad g \in G$, are dual bases and $z=|G| u_{e}=$ $|G| \alpha(e, e) 1_{A}$.

If R is connected, $|G|$ is invertible in R, and $R *_{\alpha} G \cong \mathrm{End}_{R}\left(P_{1}\right)$ $\oplus \cdots \oplus \mathrm{End}_{R}\left(P_{q}\right)$ with P_{i} as above (see, for example, [8]), then we may apply Theorem 3.10 and Proposition 3.12. Now all rank $\left(P_{j}\right)$ are invertible in R and $t_{P_{j}}(z)=\operatorname{rank}\left(P_{j}\right)|G| \alpha(e, e)$.
(2) R ecall that a Schur algebra in $R G$ (with associated partition $\left\{E_{g}\right.$; $g \in G\}$) is a symmetric Frobenius R-algebra, whenever $\left|E_{g}\right|$ is invertible in R for all $g \in G$, cf. Example 3.5.
3.15. Note. Let b be a nonsingular associative R-bilinear form on A with dual bases $\left\{a_{1}, \ldots, a_{n}\right\},\left\{b_{1}, \ldots, b_{n}\right\}$, and let $\beta: A \rightarrow A^{*}$ be associated to b as in Remarks 3.1.
(1) Since β is bijective, β induces a ring structure on A^{*}. Explicitly, let $\varphi, \psi \in A^{*} ; \varphi=\beta(s), \psi=\beta(t)$. Then $\varphi \times \psi=\beta(s t)$.

Now let $A=R *_{\alpha} G$ with bilinear form associated to $\tau: A \rightarrow R$: $\sum_{g \in G} r_{g} u_{g} \mapsto r_{e}$, as in Example 3.5(1). By Lemma 3.3, we have

$$
s t=\sum_{k \in G} \varphi \times \psi\left(u_{k^{-1}}\right) \alpha\left(k, k^{-1}\right)^{-1} u_{k} .
$$

On the other hand,

$$
s t=\sum_{g \in G} \sum_{h \in G} \varphi\left(u_{g^{-1}}\right) \psi\left(u_{h^{-1}}\right) \alpha\left(g, g^{-1}\right)^{-1} \alpha\left(h, h^{-1}\right)^{-1} \alpha(g, h) u_{g h} .
$$

But

$$
\begin{aligned}
& \alpha\left(h, h^{-1}\right)^{-1} \alpha\left(g, g^{-1}\right)^{-1} \alpha(g, h) \alpha\left(g h,(g h)^{-1}\right) \\
& \quad=\alpha\left(h, h^{-1}\right)^{-1} \alpha\left(h,(g h)^{-1}\right) \\
& \quad=\alpha(e, e) \alpha\left(h^{-1}, g^{-1}\right)^{-1} .
\end{aligned}
$$

Consequently,

$$
s t=\sum_{k \in G} \sum_{g \in G} \varphi\left(u_{g^{-1}}\right) \psi\left(u_{k^{-1} g}\right) \alpha(e, e) \alpha\left(k^{-1} g, g^{-1}\right)^{-1} \alpha\left(k, k^{-1}\right)^{-1} u_{k} .
$$

So we obtain

$$
\varphi \times \psi\left(u_{k}\right)=\sum_{g \in G} \varphi\left(u_{g^{-1}}\right) \psi\left(u_{k g}\right) \alpha(e, e) \alpha\left(k g, g^{-1}\right)^{-1} .
$$

(2) The map β also induces an R-bilinear form b^{*} on A^{*}. Explicitly, let $\varphi, \psi \in A^{*} ; \varphi=\beta(s), \psi=\beta(t)$. Then $b^{*}(\varphi, \psi)=b(s, t)$. Now let b be symmetric. Then we may write $s=\sum_{i} \varphi\left(b_{i}\right) a_{i}$ and $t=\sum_{j} \psi\left(a_{j}\right) b_{j}$. Consequently, $b^{*}(\varphi, \psi)=\sum_{i=1}^{n} \varphi\left(b_{i}\right) \psi\left(a_{i}\right)$. The formulas in Theorem 3.10(2)-(3) and in Proposition 3.12(1) can be rewritten using the R-bilinear form b^{*}.
(3) We also have the following multiplication on A^{*}. For $\varphi, \psi \in A^{*}$, define $\varphi * \psi\left(a_{i}\right)=\varphi\left(a_{i}\right) \psi\left(a_{i}\right)$ and extend by linearity. On the other hand, we may consider the following componentwise multiplication on A. Let $s, t \in A$, write $s=\sum_{i=1}^{n} r_{i} b_{i}, t=\sum_{i=1}^{n} r_{i}^{\prime} b_{i}$ with $r_{i}, r_{i}^{\prime} \in R$, and set $s * t=$ $\sum_{i=1}^{n} r_{i} r_{i}^{\prime} b_{i}$. Then $\beta(s * t)=\beta(s) * \beta(t)$, as is easily checked.

4. CLASS FUNCTIONS ON SCHUR ALGEBRAS

Throughout this section, R is a commutative ring, G is a finite group, and $\left\{E_{g} ; g \in G\right\}$ is a partition of G such that $E_{g}^{-1}=E_{g^{-1}}$ and $\left|E_{g}\right|$ is invertible in R. Put $s_{g}=\sum_{x \in E_{g}} u_{x}$ in $R G, \hat{s}_{g}=\left|E_{g}\right|^{-1} s_{g}$, and let G_{0} denote a set of representatives of the distinct E_{g}. We assume that $S=\oplus_{g \in G_{0}} R s_{g}$ is a subalgebra with unit element, i.e., S is a Schur algebra in $R G$. N ote that $\hat{s}_{e}=1_{S}$, see Lemma 1.3.

Recall that $\tau: S \rightarrow R: \sum_{g \in G_{0}} r_{g} s_{g} \mapsto r_{e}$ defines a symmetric associative R-bilinear form b on S with dual bases $\left\{\hat{s}_{g}\right\},\left\{s_{g^{-1}}\right\}$. As in Section 3, let $z=\sum_{g \in G_{0}} \hat{s}_{g} s_{g^{-1}}$ and $\zeta: S \rightarrow Z(S): s \mapsto \sum_{g \in G_{0}}^{g} \hat{s}_{g} s s_{g^{-1}}$. A gain, $Z(S)$ denotes the center of S.
4.1. Definition. We define an equivalence relation on G as follows: $g \sim h$ if and only if $f\left(\hat{s}_{g}\right)=f\left(\hat{s}_{h}\right)$ for all $f \in \operatorname{Sym}(S, R)$. In this case we say that g and h are S-conjugated (see also Note 4.12).
4.2. Proposition. Let $g, h \in G$. If $g \sim h$, then $\zeta\left(\hat{s}_{g}\right)=\zeta\left(\hat{s}_{h}\right)$. In case z is invertible in S, the converse holds true.

Proof. The result follows from Proposition 3.9. 【
4.3. Remark. Suppose R is connected and $S \cong \mathrm{End}_{R}\left(P_{1}\right) \oplus \cdots \oplus$ End $_{R}\left(P_{q}\right)$ as R-algebras, P_{1}, \ldots, P_{q} being finitely generated projective R-modules, and suppose that z is invertible in S. Then $g \sim h$ if and only if $t_{P}\left(\hat{s}_{g}\right)=t_{P_{i}}\left(\hat{s}_{h}\right)$ for $i=1, \ldots, q$, see Theorem 3.10(6) and Proposition 3.12(2).
4.4. Lemma. Let $g, h \in G$. If $g \sim h$, then $g^{-1} \sim h^{-1}$.

Proof. Let $f \in \operatorname{Sym}(S, R)$. Take the map $\theta: R G \rightarrow R G: \sum_{g \in G} r_{g} u_{g} \rightarrow$ $\sum_{g \in G} r_{g} u_{g^{-1}}$ and consider the restriction to S. By Lemma 1.4, $f \circ \theta \in$ $\operatorname{Sym}(S, R)$. Since $g \sim h$, we have $(f \circ \theta)\left(\hat{s}_{g}\right)=(f \circ \theta)\left(\hat{s}_{h}\right)$. The statement follows at once.

For the remainder of this section, we fix the following notation. For $g \in G$, set $K_{g}=\{h \in G \mid g \sim h\}$. Obviously $\left\{K_{g} ; g \in G\right\}$ is a partition of G and by Lemma 4.4, $K_{g^{-1}}=K_{g}^{-1}$. Put $v_{g}=\sum_{x \in K_{g}}^{u_{x}} u_{x}$ and let G_{1} denote a set of representatives of the distinct K_{g}.

We observe that $K_{g}=E_{g} \cup \cdots \cup E_{t}$, in particular $v_{g} \in S$. Furthermore, $K_{e}=E_{e}$. Indeed, $\tau\left(\hat{s}_{e}\right)=\left|E_{e}\right|^{-1} 1_{R}$ and $\tau\left(\hat{s}_{k}\right)=0$ for $k \notin E_{e}$.
4.5. Definition. Let $f \in S^{*}$. We say that f is a class function on S if $g \sim h$ in G implies that $f\left(\hat{s}_{g}\right)=f\left(\hat{s}_{h}\right)$. The set of all class functions forms an R-submodule of S^{*}, denoted by $C f(S, R)$. Clearly $\operatorname{Sym}(S, R) \subset C f(S, R)$.

4.6. Proposition. (1) $Z(S) \subset \oplus_{g \in G_{1}} R v_{g}$.

(2) $Z(S)=\oplus_{g \in G_{1}} R v_{g}$ if and only if $\operatorname{Sym}(S, R)=C f(S, R)$.

Proof. Consider the left S-linear map $\beta: S \rightarrow S^{*}$ associated to τ as in Remarks 3.1. We know that β is bijective and $\beta(Z(S))=\operatorname{Sym}(S, R)$, by Lemma 3.4. It suffices to show that $\beta\left(\oplus R v_{g}\right)=C f(S, R)$. We have $\beta\left(v_{g}\right)\left(\hat{s}_{k}\right)=\tau\left(\hat{s}_{k} v_{g}\right)=1$ for $k \in K_{g^{-1}}$ and $\tau\left(\hat{s}_{k} v_{g}\right)^{\delta}=0$ for $k \notin K_{g^{-1}}$. Hence $\beta\left(\oplus R v_{g}\right) \subset C f(S, R)$. For the reverse inclusion, use Lemma 3.3.

At the end of this section we give an example to show that the inclusion in Proposition 4.6(1) need not to be an equality. Our next objective is to analyze the equality $Z(S)=\oplus R v_{g}$. We begin with a few remarks.
4.7. Remarks. (1) If $s_{g} \in Z(S)$, then $K_{g}=E_{g}$ by Proposition 4.6(1).
(2) It is easily verified that $\zeta\left(v_{g}\right)=\left|K_{g}\right| \zeta\left(\hat{(}_{g}\right)$. In particular, if $v_{g} \in$ $Z(S)$, then $z v_{g}=\left|K_{g}\right| \zeta\left(\hat{s}_{g}\right)$.
(3) If $v_{g} \in Z(S)$ and z is invertible in S, then $\left|K_{g}\right|$ is invertible in R. Indeed, $v_{g}=\left|K_{g}\right| \zeta\left(\hat{s}_{g}\right) z^{-1}=\left|K_{g}\right| \Sigma_{k \in G_{1}} r_{k} v_{k}$ with $r_{k} \in R$, whence $1=$ $\left|K_{g}\right| r_{g}$.
4.8. Proposition. Suppose that z is invertible in S. Then $Z(S)=$ $\oplus_{g \in G_{1}} R v_{g}$ if and only if the distinct $\zeta\left(\hat{s}_{k}\right)$ are linearly independent over R.
Proof. By Proposition 4.2, $\zeta\left(\hat{s}_{g}\right), g \in G_{1}$, are all distinct $\zeta\left(\hat{s}_{t}\right)$. Suppose that $\zeta\left(\hat{s}_{g}\right), g \in G_{1}$, are linearly independent over R. Let $f \in C f(S, R)$. It suffices to show that f is symmetric, see Proposition 4.6. Let $x \in S$ be such that $\zeta(x)=0$ and write $x=\sum_{k \in G_{0}} r_{k} \hat{s}_{k}, r_{k} \in R$. So $0=\zeta(x)=$ $\sum_{g \in G_{1}}\left(\sum_{k \in J(g)} r_{k}\right) \zeta\left(\hat{s}_{g}\right)$ with $J(g)=G_{0} \cap K_{g}$, whence $\sum_{k \in J(g)} r_{k}=0$. It follows that $f(x)=0$ and thus f is symmetric, see Proposition 3.8.

For the converse, use Remarks 4.7(2) and (3).
As in Section 1, we may consider the following componentwise multiplication on $R G$. Let $a, a^{\prime} \in R G, a=\sum_{g \in G} r_{g} u_{g}$, and $a^{\prime}=\sum_{g \in G} r_{g}^{\prime} u_{g}$ with $r_{g}, r_{g}^{\prime} \in R$. Then we define $a * a^{\prime}=\sum_{g \in G} r_{g} r_{g}^{\prime} u_{g}$. Of course S is closed under this multiplication.
4.9. Proposition. Suppose that R is a domain. If $Z(S)$ is closed under the above componentwise multiplication, then $Z(S)=\oplus_{g \in G_{1}} R v_{g}$.

Proof. (1) We first assume that R is a field. Note that $\sum_{g \in G} u_{g}=$ $\sum_{g \in G_{0}} s_{g} \in Z(R G) \cap S$, hence $\sum_{g \in G} u_{g} \in Z(S)$. Then by Proposition 1.5, there is a partition $\left\{F_{k} ; k \in G\right\}$ of G such that $Z(S)=\oplus_{w_{k}} R w_{k}$ with $w_{k}=\sum_{x \in F_{k}} u_{x}$. Since $Z(S) \subset \oplus_{g \in G_{1}} R v_{g}$, each w_{k} is a sum of certain v_{g}. Fix w_{k}; say $w_{k}=v_{g_{1}}+\cdots+v_{g_{m}}, g_{i} \in G_{1}$. We now prove that $m=1$.

Let $f \in \operatorname{Sym}(S, R)$. By Lemmas 3.3 and $3.4, c=\sum_{g \in G_{0}} f\left(\hat{s}_{g^{-1}}\right) s_{g} \in Z(S)$, and $c=\sum_{g \in G_{1}} f\left(\hat{s}_{g^{-1}}\right) v_{g}$. But $c * w_{k}=r w_{k}$ for some $r \in R$. Therefore
$f\left(\hat{s}_{g_{1}^{-1}}\right)=\cdots=f\left(\hat{s}_{g_{m}^{-1}}\right)=r$. From this it follows that $g_{1} \sim g_{i}, i=1, \ldots, m$. Consequently, $m={ }^{=} 1$ and $w_{k}=v_{g_{1}}$. Then, using $\sum_{w_{k}} w_{k}=\sum_{g \in G_{1}} v_{g}$, we obtain $Z(S)=\oplus_{g \in G_{1}} R v_{g}$.
(2) Now let R be a domain with field of quotients L. Consider the Schur algebra $\bar{S}=\oplus_{g \in G_{0}} L s_{g}$ in $L S$. We observe that $Z(S)=Z(\bar{S}) \cap S$. Then it is easily verified that $\bar{Z}(\bar{S})$ is closed under componentwise multiplication in $L G$. Further, $g, h \in G$ are \bar{S}-conjugated if and only if they are S-conjugated. In order to prove this, one needs the following remarks. A map $f \in \operatorname{Sym}(S, R)$ can be extended to a map $\bar{f} \in \operatorname{Sym}(\bar{S}, L)$ by setting $\bar{f}\left(\sum_{g \in G_{0}} l_{g} s_{g}\right)=\sum_{g \in G_{0}} l_{g} f\left(s_{g}\right), l_{g} \in L$. On the other hand, let $\varphi \in$ $\operatorname{Sym}(\bar{S}, L)$. Then there exists $r \in R$ such that $r \varphi\left(s_{g}\right) \in R$ for all $g \in G_{0}$, and $\left.r \varphi\right|_{s} \in \operatorname{Sym}(S, R)$. The above discussion yields the equality $Z(\bar{S})=$ $\oplus_{g \in G_{1}} L v_{g}$. Consequently, $v_{g} \in Z(\bar{S}) \cap S=Z(S)$, as desired.
4.10. Remark. To the above defined componentwise multiplication on $R G$ there corresponds a multiplication on $(R G)^{*}$; see N ote 3.15(3). Namely, let $\varphi, \psi \in(R G)^{*}$. Then $\varphi * \psi\left(u_{g^{-1}}\right)=\varphi\left(u_{g^{-1}}\right) \psi\left(u_{g^{-1}}\right)$, or equivalently, $\varphi * \psi\left(u_{g}\right)=\varphi\left(u_{g}\right) \psi\left(u_{g}\right)$ for all $g \in G$.
In the case where $Z(S)=\oplus R v_{g}$ we can derive the second orthogonality relations.
4.11. Proposition. Suppose R is connected and $S \cong \operatorname{End}_{R}\left(P_{1}\right) \oplus \cdots \oplus$ $\mathrm{End}_{R}\left(P_{q}\right)$ as R-algebras, P_{1}, \ldots, P_{q} being finitely generated projective R modules, and suppose that z is invertible in S. If $Z(S)=\oplus_{g \in G_{1}} R v_{g}$, then for $g, h \in G_{1}$ we have

$$
\sum_{i=1}^{q}\left|K_{h}\right| \operatorname{rank}\left(P_{i}\right) t_{P_{i}}(z)^{-1} t_{P_{i}}\left(\hat{s}_{g}\right) t_{P_{i}}\left(\hat{s}_{h^{-1}}\right)=\delta_{g h} .
$$

Proof. Note that $\left|G_{1}\right|=q$. By Theorem 3.10 and Proposition 3.12,

$$
\sum_{g \in G_{0}} \operatorname{rank}\left(P_{i}\right) t_{P_{i}}(z)^{-1} t_{P_{i}}\left(\hat{s}_{g}\right) t_{P_{j}}\left(s_{g^{-1}}\right)=\delta_{i j}
$$

This gives

$$
\sum_{g \in G_{1}} \operatorname{rank}\left(P_{i}\right) t_{P_{i}}(z)^{-1} t_{P_{i}}\left(\hat{s}_{g}\right) t_{P_{j}}\left(v_{g^{-1}}\right)=\delta_{i j}
$$

and $t_{P_{j}}\left(v_{g^{-1}}\right)=\left|K_{g}\right| t_{P_{j}}\left(\hat{s}_{g^{-1}}\right)$. We can write this relation as $A B=I ; A, B$ being $q \times q$ matrices. Then $B A=I$, which implies the desired formula.
4.12. Note. We discuss the case where $S=R G$. Here, $g, h \in G$ are $R G$-conjugated if and only if $h=\operatorname{tgt}^{-1}$ for some $t \in G$. Indeed, suppose that $f\left(u_{g}\right)=f\left(u_{h}\right)$ for all $f \in \operatorname{Sym}(R G, R)$. In other words, $\tau\left(u_{g} c\right)=$
$\tau\left(u_{h} c\right)$ for all $c \in Z(R G)$, see Lemma 3.4. Let s denote the sum in $R G$ of all distinct conjugates $\mathrm{kg}^{-1} \mathrm{k}^{-1}, k \in G$. Clearly, $s \in Z(R G)$ and $\tau\left(u_{g} s\right)=$ 1. Consequently, $\tau\left(u_{h} s\right)=1$, whence $\operatorname{tg}^{-1} t^{-1}=h^{-1}$ for some $t \in G$. The converse is obvious.
With notation as before, we have $v_{g} \in Z(R G)$ and $Z(R G)=$ $\oplus_{g \in G_{1}} R v_{g}$. M oreover, $\zeta\left(u_{g}\right)=\left|C_{G}(g)\right| v_{g}$.
Let us now focus on the case where S is a double coset algebra. So let H be a subgroup of G with $|H|^{-1} \in R$, put $\varepsilon=|H|^{-1} \sum_{h \in H} u_{h}$, and consider $S=\varepsilon R G \varepsilon$, see also Section 2.

Let $Z(S)$ and τ be as before, and put $\hat{s}_{g}=|H g H|^{-1} \sum_{x \in H g H} u_{x}$, for $g \in G$.

For $R G$-conjugacy we now set $C_{k}=\left\{t k t^{-1} \mid t \in G\right\}$ and $w_{k}=\sum_{x \in C_{k}} u_{x}$, with $k \in G$.
4.13. Proposition. Consider $S=\varepsilon R G \varepsilon$ and let $g_{1}, g_{2} \in G$.
(1) If g_{1} and g_{2} are S-conjugated, then

$$
\left|H g_{1} H\right|^{-1}\left|H g_{1} H \cap C_{k}\right| 1_{R}=\left|H g_{2} H\right|^{-1}\left|H g_{2} H \cap C_{k}\right| 1_{R}
$$

for any $R G$-conjugacy class C_{k}.
(2) If R is connected and R is a splitting ring for $R G$, then the converse of (1) holds.

Proof. Note that g_{1} and g_{2} are S-conjugated if and only if $\tau\left(\hat{s}_{g_{1}} c\right)=$ $\tau\left(\hat{s}_{g_{2}} c\right)$ for all $c \in Z(S)$, see Lemma 3.4.
(1) Clearly $\varepsilon w_{k} \in Z(S)$. Further, $\tau\left(\hat{s}_{g} \varepsilon w_{k}\right)=\tau\left(\hat{s}_{g} w_{k}\right)=$ $|\mathrm{HgH}|^{-1}\left|\mathrm{HgH} \cap \mathrm{C}_{k^{-1}}\right| 1_{R}$. The assertion now follows.
(2) It suffices to show that $\varepsilon w_{k}, k \in G$, generate $Z(S)$ as R-module. Let $\left\{e_{1}, \ldots, e_{q}\right\}$ be the set of primitive central nonzero idempotents of $R G$, and let $\varepsilon e_{i} \neq 0$ for $i=1, \ldots, m$. Take $a \in Z(S)$. By Theorem 2.5(1)-(3), we have $a=\sum_{i=1}^{m} r_{i} \varepsilon e_{i}$ with $r_{i} \in R$. M oreover, $e_{i}=\sum r_{k}^{\prime} w_{k}$ with $r_{k}^{\prime} \in R$.

W e conclude this section with a concrete example of the above situation, based on [15]. This example shows that the inclusion in Proposition 4.6(1) need not to be an equality.

Example. Consider in $G L_{3}\left(\mathbb{Z}_{3}\right)$, the matrices

$$
a=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad b=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right),
$$

$$
c=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right), \quad d=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Let $G=\langle a, b, d\rangle$. We have the relations $a^{3}=b^{3}=I, d^{2}=I, d a=a^{2} d$, and $d b=b^{2} d$. Further, $c=b a b^{-1} a^{-1}, c^{3}=I$, and c commutes with a, b, d. So each element of G can be expressed as $a^{i} b^{j} d^{k} c^{l}$ with $i, j, l=$ $0,1,2$ and $k=0,1$.
N ow let $H=\langle d\rangle$, put $\varepsilon=\frac{1}{2}\left(u_{I}+u_{d}\right)$ in $\mathbb{C} G$, and consider $S=\varepsilon(\mathbb{C} G) \varepsilon$. U sing Proposition 4.13 and the $R G$-conjugacy classes C_{a} and C_{d}, it is easy to check that the S-conjugacy class K_{a} of a is equal to HaH . However, $\underline{H a H}=\sum_{x \in H a H} u_{x}$ does not commute with $\underline{H b H}$, and thus $\underline{H a H} \notin Z(S)$.

5. TRACE FUNCTIONS OF INDUCED MODULES

Throughout this section, R is a commutative ring, G is a finite group, and H is a subgroup of G. Let S be a Schur algebra in $R G$ with associated partition $\left\{E_{g} ; g \in G\right\}$ and let B be a Schur algebra in $R H$ with partition $\left\{F_{h} ; h \in H\right\}$. Further, let G_{0}, resp. H_{0}, denote a set of representatives of the distinct E_{g}, resp. F_{h}. Put $s_{g}=\sum_{x \in E_{g}} u_{x}$ and $b_{h}=\sum_{x \in F_{h}} u_{x}$.
5.1. Definition. The Schur algebra B is called a Schur subalgebra of S if for each $h \in H$ we have $F_{h}=\cup E_{g}$, for some $g \in G$.

For the remainder of this section, we assume that B is a Schur subalgebra of S. We also assume $\left|E_{g}\right|^{-1} \in R$ and $\left|F_{h}\right|^{-1} \in R$ for all $g \in G, h \in H$. We set $\hat{s}_{g}=\left|E_{g}\right|^{-1} s_{g}$, analogously \hat{b}_{h}.
5.2. Definition. Let $f \in \operatorname{Hom}_{R}(B, R)$. We define $\tilde{f} \in \operatorname{Hom}_{R}(S, R)$ as follows: $\tilde{f}\left(\hat{s}_{g}\right)=0$ if $g \notin H$ and $\tilde{f}\left(\hat{s}_{g}\right)=f\left(\hat{b}_{g}\right)$ if $g \in H$, and extend by linearity.

We observe that $\left.\tilde{f}\right|_{B}=f$.
Under certain conditions, we shall derive a formula for the trace function of an induced module. We set $z_{S}=\sum_{g \in G_{0}} \hat{s}_{g} s_{g^{-1}}$ and $z_{B}=$ $\sum_{h \in H_{0}} \hat{b}_{h} b_{h^{-1}}$.
5.3. Proposition. Assume that $F_{e}=E_{e}$ and that z_{S} is invertible in S. Suppose R is connected and finitely generated projective R-modules are free. Further, suppose $S \cong \oplus_{j=1}^{q} \operatorname{End}_{R}\left(M_{j}\right)$ and $B \cong \oplus_{i=1}^{p} \operatorname{End}_{R}\left(N_{i}\right)$ as R algebras, where M_{j}, N_{i} are finitely generated projective R-modules. Set $N_{i}^{S}=$ $S \otimes_{B} N_{i}$. Then

$$
t_{N_{i}}\left(z_{B}\right) t_{N_{i}^{s}}=\operatorname{rank}_{R}\left(N_{i}\right)\left(\tilde{t}_{N_{i}} \circ \zeta\right) \quad \text { on } S \text {, }
$$

where $\zeta: S \rightarrow Z(S): x \mapsto \sum_{g \in G_{0}} \hat{s}_{g} x s_{g^{-1}}$.

Proof. Recall that N_{i} is an indecomposable left B-module (similar remark for M_{j}). Combining Remark 3.11(3) and Proposition 3.12, we have for any $x \in S$

$$
\zeta(x)=\sum_{j=1}^{q} t_{M_{j}}(x)\left(\sum_{g \in G_{0}} t_{M_{j}}\left(s_{g^{-1}}\right) \hat{s}_{g}\right) .
$$

A pplying $\tilde{t}_{N_{i}}$ to this expression yields

$$
\begin{aligned}
\tilde{t}_{N_{i}}(\zeta(x)) & =\sum_{j=1}^{q} t_{M_{j}}(x)\left(\sum_{g \in G_{0} \cap H} t_{M_{j}}\left(s_{g^{-1}}\right) t_{N_{i}}\left(\hat{b}_{g}\right)\right) \\
& =\sum_{j=1}^{q} t_{M_{j}}(x)\left(\sum_{g \in H_{0}} t_{M_{j}}\left(b_{g^{-1}}\right) t_{N_{i}}\left(\hat{b}_{g}\right)\right) .
\end{aligned}
$$

By the hypothesis on R, we have $\left.M_{j}\right|_{B} \cong \oplus_{k} N_{k}^{c_{k j}}$ as left B-modules, where $c_{k j} \in \mathbb{N}$. Thus $t_{M_{j}}=\sum_{k} c_{k j} t_{N_{k}}$ on B. Using the orthogonality relations, Theorem 3.10(2) and Proposition 3.12(1), we then obtain

$$
\operatorname{rank}_{R}\left(N_{i}\right) \tilde{t}_{N_{i}}(\zeta(x))=\sum_{j=1}^{q} t_{M_{i}}(x) c_{i j} t_{N_{i}}\left(z_{B}\right)
$$

By the hypothesis on R, we can apply a version of F robenius reciprocity, see [3, 1.2]. This gives $t_{N_{i}^{s}}=\sum_{j=1}^{q} c_{i j} t_{M_{j}}$, which completes the proof.
To conclude, let $S=R G$ and $B=R H$. In this case we have $z_{S}=|G| u_{e}$ and $z_{B}=|H| u_{e}$. With hypotheses and notation as in Proposition 5.3 (in particular $|G|^{-1} \in R$), we now obtain

$$
|H| t_{N_{i}^{s}}\left(u_{x}\right)=\tilde{t}_{N_{i}}\left(\sum_{g \in G} u_{g x g^{-1}}\right), \quad \text { for } x \in G
$$

(use also Proposition 3.12(2)). Of course, this formula can be proved without any assumption (N being a left $R H$-module, which is finitely generated and projective over R).

REFERENCES

1. C. A postolopoulou, M. V an den Bergh, and F. V an Oystaeyen, On Schur rings of group rings of finite groups, Comm. Algebra 20 (1992), 2139-2152.
2. C. W. Curtis and I. Reiner, "M ethods of Representation Theory with A pplications to Finite Groups and Orders," Wiley-Interscience, New Y ork, 1981.
3. L. Delvaux and E. Nauwelaerts, Projective group representations and centralizers: Character theory, J. Algebra 168 (1994), 314-339.
4. F. DeM eyer, Projective modules over central separable algebras, Canad. J. Math. 21 (1969), 39-43.
5. F. DeM eyer and E. Ingraham, "Separable A Igebras over Commutative Rings," Lecture Notes in M ath., V ol. 181, Springer-V erlag, N ew Y ork, 1971.
6. W. Feit, "The Representation Theory of Finite Groups," Math. Library, Vol. 25, N orth-H olland, A msterdam, 1982.
7. S. Montgomery, "Fixed Rings of Finite Automorphism Groups of Associative Rings," Lecture Notes in M ath., V ol. 818, Springer-V erlag, New Y ork, 1980.
8. E. Nauwelaerts and F. Van Oystaeyen, The Brauer splitting theorem and projective representations of finite groups over rings, J. Algebra 112 (1988), 49-57.
9. E. Nauwelaerts and F. V an Oystaeyen, M odule characters and projective representations of finite groups, Proc. London Math. Soc. 62 (1991), 151-166.
10. E. Nauwelaerts and L. Delvaux, Restriction of projective group representations to subgroups and centralizers, J. Algebra 157 (1993), 63-79.
11. F. R oesler, D arstellungstheorie von Schur-A Igebren, Math. Z. 125 (1972), 32-58.
12. G. Szeto, On the Brauer splitting theorem, Pacific J. Math. 31 (1969), 505-512.
13. O. Tamaschke, On the theory of Schur-rings, Ann. Mat. Pura Appl. (4) 81 (1969), 1-43.
14. H. Wielandt, "Finite Permutation Groups," A cademic Press, New Y ork/London, 1964.
15. E. C. Dade, Counterexamples to a conjecture of Tamaschke, J. Algebra 11 (1969), 353-358.
