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A Schur algebra is a subalgebra of the group algebra RG associated to a
partition of G, where G is a finite group and R is a commutative ring. For two
classes of Schur algebras we study the relationship between indecomposable
modules over the Schur algebra and over RG, but we discuss this problem in a
more general context. Further we develop a character theory for Schur algebras; in
particular, we express primitive central idempotents in terms of trace functions and
we derive orthogonality relations for trace functions. These results are also
presented in a more general context, namely for Frobenius algebras over rings.
Moreover, we focus on class functions on Schur algebras.  © 1998 Academic Press

INTRODUCTION

A Schur algebra is a subalgebra of the group algebra RG associated to a
partition of G, where G is a finite group and R is a commutative ring, see
Definition 1.1. Schur algebras over C were introduced by Schur and
Wielandt [14], and were first studied by Tamaschke [13] and Roesler [11].

In Section 2 we study indecomposable modules for two important classes
of Schur algebras: double coset algebras (and their generalizations, see
Proposition 2.7) and fixed rings of certain automorphism groups. Double
coset algebras are studied in the more general situation of Hecke algebras:
if A is an R-algebra and ¢ a nonzero idempotent of A, then eAe¢ is
called a Hecke in 4. We investigate the relationship between indecompos-
able modules over e4¢ and indecomposable modules over A4, and we
determine the primitive central idempotents of ¢A4¢ in terms of the
idempotents of A4, see Proposition 2.4 and Theorem 2.5. In particular, we
prove that a connected ring R is a splitting ring for e4¢ whenever it is a
splitting ring for A.
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Furthermore, we study the relationship between indecomposable mod-
ules over an R-algebra A and indecomposable modules over the fixed ring
A, which is associated to a group homomorphism o: H — Aut,(A), see
Theorem 2.15 and Corollary 2.16. These results can be applied to the
situation where A is the group algebra RG and o is derived from a group
homomorphism H — Aut(G), and in this case A is a Schur algebra. In
the special case where H is a subgroup of G and o, h € H, is an inner
automorphism, the fixed ring coincides with the centralizer of RH in RG,
and in [10, 3] we obtained more relations between indecomposable mod-
ules over RH, RG, and RG".

In Section 3 we develop a character theory for Schur algebras. We show
that Schur algebras are Frobenius algebras (under a suitable condition).
Therefore we set up this problem in the more general context of Frobenius
algebras over commutative rings. First we collect some generalities on
Frobenius algebras, including a criterion for separability. We then study
symmetric functions on Frobenius R-algebras and we show that, under
certain conditions, they are generated over R by trace functions. We
express primitive central idempotents of a Frobenius algebra A in terms of
trace functions and we derive orthogonality relations for trace functions on
A, see Theorem 3.10 and Proposition 3.12.

In the case of Schur algebras we introduce class functions and we
investigate when the set of class functions coincides with the set of
symmetric functions. In fact, this latter study yields an analysis of the
center of a Schur algebra. To conclude we calculate the trace function of
induced modules between two Schur algebras (Section 5).

Throughout this paper rings are assumed to have a unit element and
modules are unitary:

1. PRELIMINARIES

Throughout R is a commutative ring. A ring is said to be connected if 0
and 1 are the only idempotent elements. We begin with some useful facts
about indecomposable modules.

Let 4 be an R-algebra and suppose that R is connected. We first
remark that a left 4-module, which is finitely generated and projective
over R, is a finite direct sum of indecomposable left 4-modules (use
rank ;). Now assume that A is finitely generated and projective as an
R-module. Then there exist primitive central orthogonal nonzero idempo-
tents e;,...,e, in A such that 1 =e¢; + -+ +e, (use rankg). Moreover,
each central nonzero idempotent of A is uniquely a sum of some e;. If M
is an indecomposable left 4-module, then there is a unique i such that
e;M # 0 and we say that M lies over e,. Further, if any two indecompos-
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able finitely generated projective left 4-modules lying over the same e¢;
are isomorphic as A-modules, then it is easily seen that any finitely
generated projective left A4-module is uniquely expressible as a finite
direct sum of indecomposable left A4-modules (up to isomorphism). The
same remark holds if we replace projectivity over 4 by projectivity over R.

In addition, suppose that A is a separable R-algebra. Then a left
A-module is projective as an R-module if and only if it is projective as an
A-module, cf. [5, p. 48]. Furthermore, if R is semilocal, then any two
indecomposable finitely generated projective left 4-modules lying over the
same primitive central idempotent of A are isomorphic as 4-modules, see
[4, Theorem 1; 10, Note 3.4]. Note also that a separable R-algebra, where
R is a field, is semisimple.

We now assume that R is a splitting ring for 4 (or A is split separable
over R); that is, 4 = Endg(M,) & --- & Endg(M,) as R-algebras,
M,, ..., M, being finitely generated projective faithful R-modules. Recall
that finitely generated projective nonzero modules over connected commu-
tative rings are always faithful, see [5, p. 8]. Note also that the center of 4
is a free R-module of rank gq. Obviously M; can be viewed as a left
A-module by setting (¢, ..., ¢,).m = ¢,(m), where m € M; and ¢; €
Endr(M,). Since R is connected, each M, is an indecomposable left
A-module, and they are not isomorphic as such. Now assume that M, lies
over the primitive central idempotent ¢, of A. If finitely generated
projective R-modules are free, for example, when R is semilocal or a
principal ideal domain, then M, is, up to isomorphism, the only indecom-
posable finitely generated projective left A-module lying over e; (see
[9, 18]). Note also that any semisimple C-algebra is split separable over C.

Next, we recall some basic facts about trace functions. Let 4 be an
R-algebra and V" a left 4-module which is finitely generated and projective
over R. Let {vy,...,0,} V, {ey ..., ¢,} €Homz(V, R) be an R-dual
basis for V. The trace function (or character) from A4 to R afforded by 1/,
notation ¢, is defined as t,(a) = L!_, ¢,(av;), for all a € A. It is easily
seen that ¢, does not depend on the choice of the dual basis. Further,
t,(xy) = t,(yx) for all x,y € A4, and if R is connected, then ¢,(1) =
rank x(V)1,; see [9, 2.5].

To conclude this subsection, let us focus on group rings. Let G be a
finite group and consider the group ring RG. As R-module, RG will be
freely generated by symbols {u,; g € G}. Recall that in case IG|™* € R,
RG is separable over R. Further, suppose R is connected and |G|™* € R.
Let m be the exponent of G and let  be a primitive mth root of unity.
Then L = R[n] is a splitting ring for LG, see [12].

We now turn to Schur algebras in RG.
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1.1. DeriNiTION.  Let G be a finite group and let {E,; g € G} (g € E,)
be a partition of G such that E, ! =E,-:. Denote by G, a set of
representatives of the distinct E,. Now let R be a commutative ring and
put s, erE u,in RG. If § = ®,_; Rs, is asubalgebra of RG with
unit element 15, then S is said to be a Schur algebra in RG.

1.2. Remarks. (1) Keep the notation of Definition 1.1 and suppose
that § = @, Rs, is a subalgebra of RG with unit element. Then the
following statement need not hold:

Vg,he G, EE,= |JE,forsomekedG. (%)
k

However, if char(R) = 0, then property (=) follows from the ring structure
of S. We also remark that property (x) holds for the Schur algebras
considered in Section 2.

(2) An example of a Schur algebra for which property () does not hold
is given in [1]. Namely, take R =7,, G =Z, X Z, and consider the
partition {(0,0),(0,1),(0,2),(1,0),(2,0)}, {(1,1),(2,2),(1,2),(2,1)}. Here,
50,0y 1S the unit element.

Of course, if E, = {e}, then s, = 15. Furthermore:
1.3. LEmmA. Let R, G, Eg, S, be as in Definition 1.1.

(1) Suppose for all g, h € G we have E E,, = U, E; (some k € G).
Then E, is a subgroup of G and s,s, = s,s, = |E,|s, forallg € G.

(2) Suppose that S = @ ¢ <G, Rs, is a subalgebra of RG with unit
element 1. Then |E,| is invertible in R. Moreover if IE IlR # 0 and |E 1,
is not a zero divisor in R for each g € G, then 15 = |E, |

Proof. (1) We shall prove that xE, C E, for all x € E,. But then
equality must hold, because |xE,| = |E,| Analogously E,x = E,, and the
assertions follow. Now take y € E, and put & = xy. Then E, E,. N E, #

&, and thus by our hypothesis E, c E,E, .. Therefore E, = Eg

() Write 13 = ¥, ., 7,5, With rg €R,and let e € G,. Then s, =
Yoeg, eSS, for all t € G. Comparing coefficients of u,, we obtain

8§78
1= IE |7, and 0 =|E,|r, for all g € G,\ {e}. The result now follows. |

We also mention the following elementary fact.
1.4. LEMMA. Let R, G be as above.

. D .The map 61 RG = RG: L, Ty, = Lo Fll-1 IS an anti-
isomorphism and 6 ° 6 = I.

(2) If S is a Schur algebra in RG, then 6(S) =
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Again, R is a commutative ring and G is a finite group. We may
consider the following componentwise multiplication on RG. Let a,a’ €
RG,a=YX,cqr sl and a' = X, ¢ ryu, With r,, r, € R. Then we define
axa' = Y,cqT,rau,. Note that RG, = is a commutative R-algebra with
Y, e U, as unit element. Evidently, every Schur algebra in RG is closed
under this multiplication and contains X On the other hand, we

have:

geG Ug

1.5. PROPOSITION.  Suppose R is a field.

(1) Let S be an R-submodule of RG. If S is closed under the multiplica-
tion and dec ¢ €S, then there is a partition {E ; & € G} of G such
that § = @, Rs, wheres, = L, E, Us and G, denotes a set of represen-
tatives of the dlstmct E,.

(2) Let S bean R-subalgebra of RG with unit element. If S satisfies the
conditions in (1) and 0(S) C S, then S is a Schur algebra in RG.

Proof. (1) We consider the R-algebra S, . There exist orthogonal
primitive nonzero idempotents in S, *, say e, ..., e,, such that ¥, . ; u,
=e +- - Clearly, {u,; g € G} is the set of primitive idempotents of
RG, * and thus we have e1 =u, + - +u, and so on. By the above
remarks we obtain a partition of G namely £, = {g,..., g}, etc.

Next, the multiplication * makes Ru, into a left S-module. Since
dimg(Ru,) = 1, Ru, is a simple S—module. So RG is a semisimple left
S-module and thus S, = is a semisimple ring. But then S +s, = Ru, as
S-modules (s, = e,). Consequently dim (S = s,) = 1, and thus Rs, C S = s,
must be an equality.

(2) Let 6 be as above. Clearly, 8: RG, = — RG, * is an isomor-
phism of R-algebras and 6 - 6 = I. Since 6(S) c S, it follows that 6(s,) =

s,-1 s a primitive idempotent of S, . This proves our assertion. i

1.6. Note. Let S be a Schur algebra in RG with associated partition
{E,; g € G}. Assume R is connected, |G|”! € R, and consider the idempo-
tent & = |G|"'X Y,cqU, Clearly e € S and s e = |[E|e = es,, with s,
Eer u,.. Now Se = Re is an indecomposable left S module and thus e
is a primitive idempotent of S. Moreover ¢ is an element of the center
of S. Furthermore, f,(s,) = |E,[1.

2. INDECOMPOSABLE MODULES OVER
SCHUR ALGEBRAS

Throughout, R is a commutative ring and G is a finite group. Our aim is
to investigate the relationship between indecomposable RG-modules and
indecomposable modules over certain Schur algebras.
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We begin with some results about double coset algebras. Let H be a
subgroup of G. Suppose that |H| ' € R and consider the idempotent
e=|H|['Y, . u, in RG. Then £¢RGzs is a Schur algebra, called a double
coset algebra. Indeed, H X H acts on G as follows: ((h, k), g) —
hgk™*, h,k € H,g € G, and (HgH) * = Hg 'H. Furthermore, |HgH| is
invertible in R and X ¢y, u, = |HgH|eu,&.

We shall discuss relations between RG and sRGe in a more general
context. Until further notice, 4 denotes an R-algebra and & a nonzero
idempotent of A4. Note that (End (A&))° — eAde: = (&) is an iso-
morphism of R-algebras. Further, if A is finitely generated and projective
as R-module, then so is eA4e. From [10, 4.1] we retain:

2.1. PROPOSITION.  Suppose that A is finitely generated and projective as
R-module and suppose that eAe is a faithful R-algebra (this follows whenever
R is connected). If A is separable over R, then so is eAe.

In particular, if |G| is invertible in R, then every double coset algebra in
RG is separable over R. From [2, 6.3] we may deduce:

2.2. PROPOSITION. Let P be the category of all finitely generated projec-
tive left eAe-modules and let € = €(Ae) be the category of all left A-mod-
ules which are isomorphic to A-direct summands of (Ae)™ for some m. Then
the functors Ae ®, ,, —: P — € and Hom [(Ae, —). € = P, denoted by
F, resp. F,, define an equivalence of categories between & and €. Conse-
quently, indecomposable modules in P correspond to indecomposable mod-
ules in & under F, and F,.

It is clear that Hom (A&, M) is a right End ,( A £)-module, hence it is a
left £4e-module (M being a left A-module). Moreover, Hom ,(A&, M)
— eM: y — (&) is an isomorphism of left £A4 e-modules.

Further, if 0 # M € #(Aeg), then M is a finitely generated projective
left A-module and eM # 0. We now focus on central idempotents.

2.3. Remarks. Suppose that R is connected and that A is finitely
generated and projective as R-module. Let {e;,..., e}, resp. {d,,...,d,},
be the set of primitive central nonzero idempotents of A, resp. cAe.

(1) Each nonzero ee; is uniquely expressible as a sum of d;s and
each d; appears in one and only one of the nonzero ee;.

(2) Let P €2 be indecomposable (notation as in Proposition 2.2).
Then Ae ® ,, P lies over e; if and only if ge; # 0 and P lies over some
d; appearing in the decomposition of ee,.

(3) We may write d; as a sum of orthogonal primitive nonzero
idempotents of eAe, say d; = m, + -+ +n, (use rankg). It is clear that
eAemn; is an indecomposable module in & lying over d,.
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2.4. PROPOSITION. Let R, A, and {el,...,eq} be as in Remarks 2.3.
Suppose that any two indecomposable finitely generated projective left A-
modules lying over the same e; are isomorphic as A-modules, then:

(1) The nonzero ee; are precisely the distinct primitive central idempo-
tents of eAe.

(2) Any two indecomposable finitely generated projective left eAe-
modules lying over the same nonzero ce; are isomorphic as A e-modules.

(3) Let M be an indecomposable finitely generated projective left A-
module lying over e;. Then €M # 0 if and only if ce; # 0, and this is
equivalent to M € €(Ae).

Proof.  The result follows readily from Proposition 2.2 and Remarks 2.3.

2.5. THEOREM. LetR, A, and{e,,..., eq} be as in Remarks 2.3. Suppose
A = Endg(M,) & - ® Endz(M,) as R-algebra, M; being finitely generated
projective R-modules, and assume that M, lies over e;. Then:

(1) The nonzero ge; are the primitive central idempotents of eAe.

(2) eM; # 0 if and only if ce, + 0, and this is equivalent to M, €
Z(Ae).

(3) Each nonzero &M, is an indecomposable left &Aes-module and

gAe = @ .Endp(eM,) as R-algebras, where the sum is taken over the
nonzero eM;.

Proof. Recall that each M, is an indecomposable left 4-module under
the operation (¢y,..., ¢,) -m = ¢(m), m € M;, and ¢; € End(M)).

It is easily seen that each nonzero £M, is a finitely generated projective
R-module. Further, since A is separable over R, projectivity over R is
equivalent to projectivity over 4. The same remark holds for cA4e.

(a) Obviously eM; # 0 yields ge; # 0. Now assume ge; # 0. Let
{d,...,d,} be as in Remarks 2.3; then ee, is a sum of d;’s. Consider an
indecomposable module P €% which lies over some d;, appearing in the
decomposition of ee;. We know that Ae; = End,(M,), and A& ® ,, P is
a unitary left 4e-module. Therefore there is an R-module L such that
Ae®,,, P=L ®& M, as left A (or Ae;)-modules, see, e.g., [5, p. 19].
Then P=L ® &M, as left £4e-modules. Consequently, eM; # 0 and
d;eM; # 0.

(b) Assume eM; # 0. We observe that eM; € 2. Thus Ae ® ,, &M,
€ #(Ae¢) and it is a unitary left Ae-module. But then there is a finitely
generated projective R-module N such that Ae ®,,, eM;, = N &, M, as
left A (or Ae;)-modules, see, e.g., [5, p. 19 and 23]. As a consequence,



598 DELVAUX AND NAUWELAERTS

eM, = N ®& &M, as left e4e-modules. This implies that rank ,(eM,) =
rank ,(N)rank z(eM,), whence rank z(N) = 1. Therefore Endz(N) =

= R, see, e.g., [5, p. 32]. Since we are dealing with equivalent categories,
we have End, (N ® M, = Endy(N) and End, (Ae ® ,, &M, =
End,, . (eM;) as R-algebras, see, e.g., [5, p. 17]. We conclude that
End,,.(eM,) = RI = R. In particular, ¢M, is an indecomposable left
eAe-module, see [2, 6.4].

(c) Since each nonzero &M, is indecomposable, it follows from (a)
that each nonzero ee; is a primitive central idempotent of e¢Ae. Let
eM; # 0. Since End, ,,(eM,) = RI, we then obtain eA¢ce; = Endi(eM,)
as R-algebras, see [9, 1.7] (the isomorphism associates to saee; the left
multiplication by saee;). Now, N & &M, = eM; =R ® M, as left

gAe-modules, and thus N = R (N as in (b)). Consequently, M; = Ae ®_,,
eM; € €(Ae), completing the proof. |

2.6 Remarks. Let M be a left A-module such that eM # 0. If M is
finitely generated projective over R, then so is eM and we have ¢_;,(sxe)
=ty (exe) =t,,(xe) for all x € A. More details on trace functions may
be found in [3, Sect. 4]. The case where ¢ is central is less complicated, see
also [3, 4.8 and 4.9]. Finally, if A is semisimple, then A& is semisimple
too, as is well known.

One may also apply the preceding results to the following situation.

2.7. PROPOSITION. Let S be a Schur algebra in RG with associated
partition {Eg; g € G}. Let H be a subgroup of G such that |H|™! € R and
consider the idempotent & = |H| "L,y u,. If ¢ € S and |E 1 # O forall
g € G, then &Se is a Schur algebra in RG with partition {HE H; g € G
Moreover we have m|H|~ 2IHE H|1, |E 1, with m € N.

Proof. Puts, =%, . E, Uy and let G, denote a set of representatives of

the distinct E,. Now let' g € G,. CIearIy, es,e = Xi_yn,|Hx,H|  Hx,H
with n; € N, where x; € E, are representatlves of the distinct HxH
x € E,, and Hx;H= ZyEHxH u,. Note that n; + -+ +n, = |E,|. So there

is some n, such that n;1; # 0, because |Eg|1 q& 0. Since ¢ € S we have
also es,e =X, cq, 7,5 wrth r, € R (r, = m,|H| ?1, with m, < N)

Comparing these expressions for es, &, we obtain nllelHI =r, for
i=1,...,1, whence also r, = r, or r, = 0. Moreover r, # 0. Consequently,
es,e = r,HE,H with HE H = ZyEHEgH u,. We also deduce that es,e =
.2 5, for some k € G, and we conclude that HE, H= ¥, s,. Therefore
HE,HE S N eRGe, and this intersection is equal to &Ss.

Next, the above discussion shows that for each ¢ € G, HE,H = U, E,
for some k € G,. Using this, it is easily seen that sets of the form HE H
coincide or are dISjOInt Moreover (HE, H)~ . = HE, -+ H.
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Finally, since n, + - +n, = |E,| and n;|Hx,H| "1, =r,, we have
|HE,H|r, = |E,[1x, completing the proof. 1

2.8. Remark. Proposition 2.7 remains valid if we replace the condition
|E,[1z # 0 by the following condition: for any g, h € G, E,E, = U, E, for
some / € G. In this case, it follows at once from the hypotheses that
HE,H = U, E, for some k € G.

We now turn to Schur algebras which are fixed rings of automorphism
groups. Let G, H be finite groups and let o: H - Aut(G) be a homomor-
phism of groups. The orbits E, = {0,(g) |h € H}, g € G, form a partition
of G; E;' =E,. and E,={e}. Each o, extends to an R-algebra
isomorphism of RG (again denoted by o) as follows: o,(X, r,u,) =
3, Tl o With g € G and r, € R. Furthermore, o: H — Autz(RG):
h — o, is a homomorphism of groups.

Consider the fixed ring RG” = {a € RG |Vh € H: o,(a) = a}; we have:

2.9. LEMMA.  Keep the above notation, puts, = ¥, E Uy in RG, and let
G, denote a set of representatives of the distinct E,,. Then RG" = & eeG, BSg,
i.e., RG" is a Schur algebra in RG.

Proof. Clearly s, € RG". Conversely, let X, r,u, € RG", r, € R.
Then for each h € H we have X, gr,u, = X,cq Uy, Whence

Ty = T (for nonzero r,). The result follows at once.

We recall a few facts about fixed rings of automorphism groups.
Throughout A4 is an R-algebra, H a finite group, and o: H — Autz(A4) a
homomorphism of groups.

For any a € A, denote by O(a) the orbit {o,(a)|h € H} and set
s(a) = X, c o X Clearly, A" ={a € A|Vh € H: g,(a) = a} is an R-sub-
algebra of A containing 1,. Moreover, for any a € A we have s(a) € A"
as well as ¥, . ;; 0,,(a) € A", Further, the associated skew group ring is
denoted by A= H. As a left A-module A= H is freely generated by
symbols {w,|h € H} and multiplication is defined by (aw,)-(bw,) =
ao,(b)w,, for all a,b € A, h,k € H. Of course A+ H is also an R-
algebra, where the R-module structure is inherited from A.

If [H|"" € R, then we may consider the idempotent e,, = |H| 'Y, _ ; w,
in A+ H. From [7, Lemma 2.1] we retain:

2.10. LEMMA.  Assume |H|™' € R. Then ey(A* H)e, = Aey,, and
Afe,,; is isomorphic to A™ as R-algebra.

Proof. Set & = ey, and observe that (aw,)v =av for all a € 4, v €
AxH.

For ac€A and k € H we have s(aw,) =|H| 'Y, ., o,(@)w,,. But
w,e = e. Therefore s(aw,)e =|H|"'Y, ., o,(a)e, and this shows that
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e(A* H)e c A's. On the other hand, a = |[H| 'Y, ., o,(a) for all a €
A" and the equality follows.

Using the expressions given above, it is easily verified that 47 — A%
a — ag is an isomorphism of R-algebras. |

We may use the preceding lemma to prove:
2.11. PROPOSITION. Let A, H, o be as before and assume |H|™t e R.

(1) If A is finitely generated and projective as R-module, then so is A",

(2) Suppose that A is finitely generated projective and faithful as R-
module. If A is separable over R, then so is A"

Proof. (1) Let{a;,...,a,} CA{e¢y,..., ¢} € Homgz(A4, R) be a dual
basis for A. Then it is easily checked that {| H| 'X, c ; o7.(a)}, {¢; | 4#} is a
dual basis for 47,

(2) LetX",x; ®y €A & A° be a separability idempotent for A.
Then it is easily verified that |H| 'Y, ., X7 (o,(x)w, ® yw, 1) is a
separability idempotent for A H. So A = H is separable over R. More-
over, A= H is finitely generated projective as R-module. We now apply
Lemma 2.10 and Proposition 2.1. |

Let us return to the case where 4 = RG and H acts on G. Then 4= H
is isomorphic to R(G X, H) as R-algebra, where G X, H is the semidi-
rect product of G and H (i.e., (g, hy) - (g,, hy) = (g,0,(g,), hyh,) for
g € G, h; € H). The isomorphism maps u,w, € A = H onto (g, h) for any
geG heH,

In case |H|™* € R, the algebra RG" is isomorphic to a double coset
algebra in R(G X, H), see Lemma 2.10. Furthermore we have:

2.12. ProposITION. (1) If |H| and |G| are invertible in R, then RG" is
separable over R.

(2) Suppose R is connected, and |H| and |G| are invertible in R. If R is
a splitting ring for R(G X, H), then R is a splitting ring for RG"".
In particular, let m be the exponent of G X, H and m a primitive mth root
of unity. Then L = R[n] is a splitting ring for LG".

Proof. (1) We know that |G|™* € R implies that RG is separable over
R, and we may apply Proposition 2.11(2).

(2) The first statement follows from Lemma 2.10 and Proposition
2.5(3). The second part follows from [12].

Next we deal with indecomposable modules. Connections between
RG"-modules and R(G X, H)-modules are given by the theory of double
coset algebras, developed in the first part of this section. We now investi-
gate the relationship between indecomposable RG*-modules and inde-
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composable RG-modules. We return to the general situation where A is
an R-algebra, H a finite group, and o: H — Aut,(A) a homomorphism
of groups. We require the following definition.

2.13. DEFINITION. Let M be a left A-module and let h € H. We
obtain a left A-module "M as follows: consider the underlying abelian
group of M and let A act on it by setting a > m = o, *(a)m for all a € A,
m e M.

Observe that the induced R-module structure on "M coincides with that
on M.

2.14. Remarks. (1) Let M, N be left A-modules and let &,k € H.
Then “("M) =*"M as A-modules, and Hom ,("M,"N) = Hom (M, N).

(2) Let M be a left A-module which is finitely generated and
projective over R. For the trace functions we get ¢, (a) = ,,(o;, () for
alae A, h e H

(3) If M is an indecomposable, resp. a finitely generated projective,
left A-module, then so is "M for all h € H.

(4) Suppose that R is connected and that A is finitely generated and
projective as R-module. Let {e,,..., e}, resp. {d;,...,d,}, be the set of
primitive central nonzero idempotents of A, resp. AH (use rank ;). Then
H acts on {e,...,e,} by o. Again, let s(e) denote the sum of the
idempotents in the orbit of e,. Each s(e;) is uniquely expressible as a sum
of d;’s, and each d; appears in one and only one of the s(e;). Note also
that d; appears in s(e,) if and only if de; # 0.

(5) Let R, A4, ¢;, d; be as in (4), and Iet M be an indecomposable
left 4-module lying over e,. We observe that "M lies over o,(e,), h € H.
Further, it is clear that d e; = 0 implies d;M = 0. Moreover, if M is
finitely generated projective over A and if any two indecomposable finitely
generated projective left 4-modules lying over the same primitive central
idempotent are isomorphic as A-modules, then the converse is true.
Indeed, suppose d;M = 0 and write ¢; = n; + --- +,, n, being primitive
idempotents of 4. Then de”flk =0fork=1,...,t whence djei = 0.
Note also that M| # is the direct sum of the nonzero d;M.

2.15. THEOREM. Suppose that R is connected and that A is finitely
generated and projective as R-module. Let P be an indecomposable left
Af-module, and let e be a primitive central idempotent of A such that
e(A ®u P)#0. Set W=e(A ®u P)and F =1{h € H| g)(e) = ¢}. Then

1 AeuP= €Bf=1h"Was left A-modules, where {h,, ..., h} is a set
of left coset representatives of F in H.
Moreover, F ={h € H |hW = W as A-modules}.
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(2) If P is finitely generated and projective over A™, then we may write
A®u P=M & - &M, where each M, is an indecomposable left A-
module. In this case W is the direct sum of all M, lying over e.

Proof. (1) Let{e =e,,...,e¢,]) be the set of all primitive central idem-
potents of A4 for which e,(A4 ®,» P) # 0, and set W, = ¢,(A4 ®1 P). Then
AQu P=W, & - W, (W=W).

Further, let d denote the primitive central idempotent of A for which
dP # 0. Then e(A ®u P) # 0 implies e¢;d # 0. By Remark 2.14(4), it
follows that e, ..., e, belong to the same orblt (of the action of H).

Now let / € H. We observe that A ®u P —"(A ®u P): L, a, ® p, —
x.o, ' a,) ®p, is an |somorph|sm of left A-modules. Thus ah(e)(A ®u P)
= o,(e)o (A4 ®AH P) ="W # 0 as A-modules. This yields o,(e) = e; for
some j €{1,...,1}.

Moreover we obtain W, = "W. Furthermore, if o,(¢) = e, then W "w.
The converse follows from the fact that eW = W and a,(e)o" W ="w.

(2) 1t is clear that 4 ®,» P is nonzero, finitely generated, and
projective over A, hence also over R, and use rank,. |

From the proof it follows that e¢,(A4 ®,» P) = 0 if and only if 4 ®x P
# 0and e;d # 0.
As an |mmed|ate consequence of Theorem 2.15, we obtain:

2.16. COROLLARY. Keep the hypotheses and notation of Theorem 2.15(2),
and suppose that any two indecomposable finitely generated projective left
A-modules lying over the same primitive central idempotent are isomorphic as
A-modules.

Then A @ P= @ _ l(h"M )¢ as A-modules, where M is an indecompos-
able finitely generated projective left A-module lying over e and k € N.
Moreover o,(e) = e if and only if "M = M.

Let Inn(A4) denote the group of inner automorphisms of 4. As a special
case we now obtain:

2.17. COROLLARY. Suppose o(H) < Inn(A). Then we have A & P
= W in Theorem 2.15, and we have A ®,» P = M* in Corollary 2.16.

Note. Suppose that o (H) < Inn(A4). Let U denote the group of invert-
ible elements of 4 and consider j: U — Inn(A): u — j, with j (a) = uau™?!
for all @ € A. Take the subgroup L =j *(o(H)) of U and restrict j to L.
Then A7 =AY and A" is the centralizer in A of the R-subalgebra
generated by L.

To conclude, let us return to Schur algebras. So let G, H be finite
groups, let o: H — Aut(G) be a homomorphism of groups, and suppose
that o(H) c Inn(G). Consider i: G — Inn(G): g = i, with i, (x) = grg™*
for all x € G. In this case, we take the subgroup K = z l((r(H)) of G and
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we restrict i to K. Extending to automorphisms of RG, we get RGY =
RGX. Now, for any subgroup K of G and homomorphism i: K — Inn(G),
we see that RGX is the centralizer of RK in RG. Further results on
modules over centralizers can be found in [10, 3].

3. SYMMETRIC FUNCTIONS ON FROBENIUS ALGEBRAS

Throughout, R is a commutative ring and A is a faithful R-algebra
which is a finitely generated free R-module. Recall that A* = Hom (A, R)
is a left 4-module under the operation (a. f)Xx) = f(xa) for a,x € A4,
fe A~

3.1. Remarks. An R-bilinear form on A is called associative if b(xy, v)
= b(x, yv) for all x,y,v € A. As is well known, there is a one-to-one
correspondence between associative R-bilinear forms b: A X A — R and
(left) A-linear maps B: A — A*, given by b(x,y) = B(y)x),x,y € 4.

On the other hand, an A-linear map B: A — A* is completely deter-
mined by B(1) = 7, and the above correspondence yields b(x,y) =
7(xy), x,y € A.

3.2. LEMMA. Let b be an associative R-bilinear form on A, let B:
A — A* be the corresponding left A-linear map, and v = B(1). The following
statements are equivalent:

(1) There are R-bases {a,,...,a,},{by,..., b} in A such that b(a,, bj)
form an invertible matrix.

(2) Foreach R-basis{ay, ..., a,} of A there exists an R-basis {b,, ..., b,}
of A with b(a;, b)) = ;.

(3) B is an isomorphism.

(4)  For every f € A* there is a unique a € A such that f = a . 7.

Proof. This is straightforward; see also [3, Lemma 3.1]. |

A bilinear form satisfying property (2) is said to be nonsingular, and
{a.},{b,} in (2) are called dual bases with respect to b. The R-algebra A is
called a Frobenius algebra if there exists a nonsingular associative R-bilin-
ear form on A.

Now let 7, f, a be as in Lemma 3.2(4); then it is easily seen that f is also
a free generator of A* viewed as a left A-module if and only if a is
invertible in A. Furthermore, we have:

3.3. LEMMA. Let b be a nonsingular associative R-bilinear form on A with
dual bases {ay, ...,a,},{by,..., b}, and let B: A — A* be the corresponding
left A-linear map. Then B~': A* — A is given by B~(f) = X_, f(a,)b,.

Proof. We have B(X; f(apb)a)) = bla;, X, fa)b) = f(a). |
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Recall that f e 4* is said to be symmetric if f(xy) = f(yx) for all
x,y € A. The set of all symmetric functions f & 4* will be denoted by
Sym(A, R). The A-module structure on A* makes Sym(A, R) into a
Z(A)-module, where Z(A) denotes the center of A.

Furthermore, we say that A is a symmetric Frobenius algebra if there
exists a nonsingular associative R-bilinear form on A which is symmetric.

3.4. LEMMA. Let b be a nonsingular symmetric associative R-bilinear
form on A, and let B: A — A* be the corresponding left A-linear map. Then
B induces an isomorphism of Z( A)-modules between Z( A) and Sym(A, R).

Proof. Let 7= B(1); 7 is symmetric. Obviously, if a € Z(A4), then
B(a) = a.7 is symmetric. Now let f e Sym(A4, R), hence f=a.7 for
some a € A. From f(yx) = f(xy) it follows that 7(yxa) = 7(xya) = 7(yax),
for all x, y € A. Therefore xa. 7t = ax. 7, whence xa = ax, forall x € 4. ||

3.5. ExampLEs. (1) Let G be a finite group and consider the twisted
group ring R *, G with R-basis {u, |g € G}. Consider the R-linear map 7:
R#,G = R X, r.u, = r,. Itisclear that 7 defines a symmetric asso-
ciative R-bilinear form on R=x,G with dual bases {u,|g € G},
{a(g, g7 u, 1| g € G} (a is 2-cocycle).

(2) Let G be afinite group, let {E,; g € G} be a partition of G such
that Eg*1 = E,-:, and let G, denote a set of representatives of the distinct
E,. Puts, =X cg u,in RG and suppose that § = & Rs, is a Schur
algebra in RG.

Now consider 7: S — R: X, c 7,5, = 1. If each |E,|is invertible in R,
then 7 defines a symmetric associative R-bilinear form on S with dual
bases {s,|g € Go}, {|E,| "s,-11g € Gy).

(3) For some other examples we refer to [3, 3.8].

8§€Gy

Now let b be a nonsingular associative R-bilinear form on A with dual
bases {a,,...,a,},{by,...,b,}. Consider the Z(A)-linear map {: A — A:
x = X!, b;xa;. We have:

3.6. PropPosITION. (1) ¢(x) is independent of the choice of the dual
bases and {(A) is independent of the choice of the nonsingular associative
bilinear form.

(2) (A) is an ideal of the center Z(A) of A.
(3) A is a separable R-algebra if and only if 1 € {(A).
(4)  If b is symmetric, then {(xy) = {(yx) forallx,y € A.
Proof. Parts (1) and (2) follow from [3, Proposition 3.6] and (3) follows

from [3, Propositions 3.7 and 3.10]. As for (4), {b,},{a;} are dual bases with
respect to b, i.e., b(b; a;) = §;, because b is symmetric. Then by (1),
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{(xy) = ¥'_, a,xyb;. Now for each x € A, we have

€ R.

n
ax = ) rya; implies xb,= Y r;b, r;
j=1

Using these relations, we obtain ¢(xy) = {(x). |

Keep the above notation and put z =z, = X ; a,b;.

It is easily verified (see [3, 3.4)) that b(x, z) = t,(x) for all x € A, where
t, denotes the trace function from A to R afforded by A viewed as left
A-module. In other words, ¢, = z. 7 where T € A* is associated to b as in
Remarks 3.1.

As a consequence, we obtain that z is independent of the choice of the
dual bases for b. Moreover, if b is symmetric, then z is central and
z =Y ba, = {(1). Furthermore, if b’ is another nonsingular associative
R-bilinear form on A, then we can find an invertible element u € A4 such
that z, = z,.u.

The invertibility of z has been investigated in [3]. In particular, if R is a
field of characteristic zero and A is separable over R, then z is invertible
in A. Here we give an additional result on invertibility. We shall need the
Z(A)-module ker £. Clearly ker ¢ is independent of the choice of the dual
bases for b and, in case b is symmetric, ker { is also independent of the
choice of the nonsingular symmetric form.

3.7. PROPOSITION.  Keep the abouve notation and assumptions and suppose
that b is symmetric. Then the following statements are equivalent:

(1)  zis invertible in A.
(2) A is separable over R and A = ker { & Z(A).

Proof. Note that ¢(c) = zc for all ¢ € Z(A).

(1) = (2). Clearly {(z7!) =1, hence {(A) = Z(A) and A is separable
over R, see Proposition 3.6. For each x € A, we write x = (x — {(z"'x))
+ ¢(z7x), and then it is easily checked that 4 = ker { @& ¢(A).

(2) = (1). By the separability, we have 1 = ¢(x) for some x € A.
There exist elements y, € ker ¢, y, € Z(A) such that x =y, +y,. Thus
1=0(y) =2, 1

Next we show that, under certain conditions, symmetric functions are
determined by their values on the center. Again let 4 be a Frobenius
algebra, let b be a nonsingular associative R-bilinear form on A with dual
bases {«;}, {b;}, and let ¢, z be as before.
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3.8. PROPOSITION.  Assume that b is symmetric and that z is invertible in
A. Given f € A*, the following conditions are equivalent:

(1) feSym(A4,R).

(2) f(x) =f(L(z x)) forall x € A.
(3) ker¢ c kerf.

Proof. (1) = (2). We have f((z 'x) = f(X, b;z" 'xa,) =
fX, a;b;z71x) = f(x).

(2) = (3). Note that Z(z7tx) = z7%(x).

(3) = (1. For all x,y € A, we have {(xy) = {(yx), hence xy —yx €
ker{ ckerf. 1

3.9. PROPOSITION.  Let b, {, z be as before and suppose that b is symmet-
ric. Then s ker f . ker { where f ranges over all elements of Sym(A4, R).
If z is invertible in A, then we get an equality.

Proof. Let T € A* be associated to b as in Remarks 3.1. Let x € A4 be
such that f(x) = 0 for all f € Sym(A, R). Then by Lemma 3.4, 7(xc) =0
for all ¢ € Z(A). For each y € A, we now have 7(y{(x)) = 7(X; yb,xa;)
= 7(X; a,yb,x) = 7({(y)x) = 0 using Proposition 3.6. Thus ¢(x).7 =0,
whence ¢(x) = 0.

In case z is invertible, we may apply Proposition 3.8 and we obtain an
equality. 1

We now show that, under certain conditions, Sym(A, R) has an R-basis
consisting of characters and we derive orthogonality relations for charac-
ters. Again let 4 be a Frobenius R-algebra, let b be a nonsingular
associative R-bilinear form on A with dual bases {a,,...,a,},{b;,..., D},
and put z = X'_, a;b,. Moreover we assume that b is symmetric, although
some results can be proved without this assumption. Further, suppose that
R is connected and let {e,, ..., e } be the set of primitive central nonzero
idempotents of 4. Let now M, ..., M, be nonzero left A-modules which
are finitely generated and projective over R, and assume that ¢, M; = 0 for
k # i. Note that an indecomposable 4-module P lies over exactly one e,.
Finally, we let rank stand for ranky, and we recall that z,, denotes the
trace function from A to R afforded by M.

3.10. THEOREM. Keep the above hypotheses and notation.

(1) If R is a splitting ring for the center, that is, Z(A) = Re; & -+ &
Req, then

rank(M,)e; = b(e;, e;) ;lfM,(ai)bi

tu(z)e; = rank(Ae;) 3 ty(a;)b;.
i=1
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(2) Forj # k we have X!'_, th(ai)th(bi) =0
(3) Let L; be any nonzero left A-module which is finitely generated

projective over R and has the property that e, L; = 0 for k # j (special case:
L; = M)). If R is a splitting ring for Z(A), then

b(e;, e;) i th(al.)tL](b,-) = rank(M;)rank(L;)1.

(4)  With assumptions as in (3) we have

rank(M; ), = rank(L;)ty

(5) If rank(M)1, # 0 and rank(M,)1, is not a zero divisor in R for
i=1,...,q, then YRR th are linearly independent over R.

(6) If R is a splitting ring for Z(A) and rank(M,)1 is invertible in R
fori=1,...,q thenty,..., Iv, form an R-basis of Sym(A, R).

(7) We have

n
ze; = )y tAe/(ai)bi'
i=1

(8) If R is a splitting ring for Z(A) and z is invertible in A, then
Lgeyr - -+ Lac, form an R-basis of Sym(A, R) (Ae; viewed as left A-module).

Proof. Let T € A* be associated to b as in Remarks 3.1. For each tM
there is a unique ¢; €A such that by, =¢C;. T By Lemma 3.3, ¢;

e ltM(a )b..

Further it is easily seen that e, . Iy, = 0 for k #j. Consequently
(eyc;). 7= 0, whence e,c; = 0 for k # . Therefore ¢; € Ae;.

(1) Since b is symmetric, ¢; € Z(A), see Lemma 3.4. Thus c¢; = r;e;
with r; € R. We now have 7,,(1) = 7(c;) = r;7(e;) and 1,,(1) = rank(M )1
Then rank(M))e; = 7(e;)c; and we obtain the first formula,

Further, we know that tA =z.7. Using the fact that 7, = X¢_,7,, on
A, itis easily seen that i, = €1y (we view 4 and Ae; as left A- modules).
We thus obtain lae, = (e; 7). 7 Smce b is symmetric, z is central and thus
z=7Y9_, e, with A, € R. Therefore Lae, = (Aje;). 7. As a consequence,
we have rank(Ae Mg = A;7(e;). On the other hand 1y(2) = rank(M)) ;.
We now have tM(z)e = rank(M IAje; = A(e))c; = rank(Ae )c; and "this
gives the second formula

(2) Apply ty,, k # ], to the expression ¢; = Xi_,; t),(a;)b;.
(3 Apply fp, to the first formula in (1).

(4) There is a unique cj € 4 such that 1, = c;.7,and ¢; = rje; with
r; € R. Moreover, rank(L )1 = rj7(e;).
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Let c;, r; be as above. Then we have c; A = Chly and thus rit,, =
7 tM Multlplylng by 7(e;), we obtain the formula in (4).

(5) Suppose that ¥¢_; u,;t), = 0with u; € R. Then X, pu;t),(e,) =0
fork=1,...,q9. We get rank(Mk),uk 0, whence w, = 0fork=1,...,q.

(6) As before we have 7, = (r;e;). 7 with r; € R. The invertibility

of rank(M;) in R implies the mvertlblllty of r; in R because rank(M;)1,

=r7(e;). Now, e;,...,e, form an R- basis of Z(A), and thus also

rieg ..., re,. By Lemma 3.4, it follows that YARRRRL IS form an R-basis of
Sym(A4, R).

(7)  Asin the proof of (1), 7, = (ze;). 7. The assertion follows from
Lemma 3.3.

(8) We have z = Y7, A,e; with A, € R and Lae, = (Ae;)). 7. Since z
is invertible in A, each A, is |nvert|ble in R. We now proceed as in (6) in
order to show that ,,,...,7,, forman R-basis of Sym(4, R). 1

3.11. Remarks. Keep the hypotheses and notation of Theorem 3.10
and assume that R is a splitting ring for Z(A4).

(1) From the proof of Theorem 3.10 we retain that rank(M)1,
r;ble;, e;) with r; € R. Further, z=1X{ , \e; with A, €R and Lae, =
(Aje;). 7, in particular rank(Ae)1; = A;b(e;, e)).

(2) If ble;, e;) is invertible in R for i =1,...,q, then b: Z(A) X
Z(A) — R is nonsingular. The converse also holds.

(3) Forall x € A we have tM(x)ze = rank(M)g(x)e tM(g(x))e
Indeed, we may write z = X7, Ne; and ((x) = X%, we,;. Clearly
tM( {(x)) = rank(M)p;. On the other hand tM(g(x)) = tM(Zl 1bixa,) =
tM(zx) Aty (X).

As before, let b be a nonsingular symmetric associative R-bilinear form
on A with dual bases {a,,...,a,},{by,...,b,}, and put z=Y" ;a;b,
Suppose that R is connected and let {e,,..., e } be the set of primitive
central nonzero idempotents of 4. We now assume that 4 = End(P,)
@ --- @ Endg(P,) as R-algebras, P;,..., P, being finitely generated pro-
jective R-modules.

Observe that Z(A) = Re; ® - & Re,. We recall that each P; is an
indecomposable left 4-module under the operation (¢,,..., ¢,).p =
@(p), p € P, and ¢; € End(P,), and we may assume that P, lies over e;.
All indecomposable left 4-modules and their characters are described in
[9, 1.8 and 2.2].

Further, from the proof of Theorem 3.13 in [3] we retain that lae, =
rank(P)tP on A, in particular rank(Ae;) = (rank P,)*.

Clearly we may apply Theorem 3.10 to Ip. Moreover the following holds
true.
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3.12. PROPOSITION. Keep the above hypotheses and notation. Then

(1) We have

|
M B

ze; = ) rank(P)tp(a;)b;

I
-

i

Z rank(P,)tp(a;)1p(b;)-

N

tp(2)

(2)  zis invertible in A if and only if all rank(P,)1, are invertible in R.
Moreover, rank(P)1 is invertible in R if and only if t,,}(z) is invertible in R.

Proof. (1) We have Lae, = rank(Pj)tP/_. The first formula now follows
from Theorem 3.10(7). Applying tp, We obtain the second formula.

(2) Let 7€ A* be associated to b. There is a unique c; € 4 such
that tp=¢;.T and c; € Ae;. Then Lae, = rank(P)tP rank(P)c 7. 0On
the other hand we know that 7,, = (ze ). 7, see Theorem 3.10, Therefore

= rank(P)c; and thus z = (Z rank(P)e XX, ¢;). So the invertibility of
z |mpI|es that aII rank(P) are mvertlble |n R To prove the converse, we
write z = X7, Ae; with A, €R and we observe that (rank P)*1,
rank(Ae;)1; = A;b(e;, ¢;), see Remarks 3.11.
The last statement follows from tP(z) rank(P); and the preceding
formula. |

3.13. Remarks. (1) We do not need the fact that b is symmetric in
the proofs of Theorem 3.10(2)—(5)—(7) and Proposition 3.12(1), and in the
proof of the implication: z invertible = rank(P))1; invertible.

(2) We recover the special case considered in [2, 9.17].

3.14. ExampLEs. (1) Asin Example 3.5(1), let A = R =, G with bilin-
ear form associated to 71 A —> R: Y, g ru, =7, In this case
{u), {a(g, gD 'u,-1}, g € G, are dual bases and z = IGlu, =
IGla(e, e)1,.

If R is connected, |G| is invertible in R, and R=*,G = Endg(P,)
® @ EndR(Pq) with P, as above (see, for example, [8]), then we may
apply Theorem 3.10 and Proposition 3.12. Now all rank(Pj) are invertible

in R and tP,(Z) = rank(P)|Glale, e).

(2) Recall that a Schur algebra in RG (with associated partition {Eg;
g € G}) is a symmetric Frobenius R-algebra, whenever |E,| is invertible in
R for all g € G, cf. Example 3.5.
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3.15. Note. Let b be a nonsingular associative R-bilinear form on A
with dual bases {a,,...,a,},{b,,...,b,}, and let B: A — A* be associated
to b as in Remarks 3.1.

(1) Since B is bijective, 8 induces a ring structure on A*. Explicitly,
let ¢, y € A*; @ = B(s), ¥ = B(¢). Then ¢ X ¢ = B(st).
Now let A = R=*,G with bilinear form associated to 7: A — R:
Ly Iglly = T, @ in Example 3.5(1). By Lemma 3.3, we have

st= Y oX p(up-)a(k k™) Tuy,.
keG

On the other hand,

st=3 X so(ugfl)lﬂ(uhfl)a(g,g‘l)fla(h:h_l)fla(glh)ugh-
8€G heG

But
a(h,h™Y) a(g.g7Y) alg h)a(gh,(gh) ")
= a(h,h™) a(h, (gh) )
= a(e,e)a(ht g

Consequently,

st= Y X e(ug )b (uesg)ale e)a(k g, gt ek, k™) uy.
keG geG

So we obtain

ex Y(u) = ¥ o(ug)p(uy)ale e)alkg, g )"

gelG

(2) The map B also induces an R-bilinear form b* on A*. Explicitly,
let @, y € A*; @ = B(s), y = B(t). Then b*(¢, ) = b(s, t). Now let b be
symmetric. Then we may write s = ¥, ¢(b))a; and ¢ = X, s(a;)b;. Conse-
quently, b*(¢, ) = X ¢(b)y(a;). The formulas in Theorem 3.10(2)—(3)
and in Proposition 3.12(1) can be rewritten using the R-bilinear form b*.

(3) We also have the following multiplication on 4*. For ¢, ¢ € A*,
define ¢ = ¢(a;) = ¢(a,)(a;) and extend by linearity. On the other hand,
we may consider the following componentwise multiplication on A. Let
s,t €A, write s =YX rb;, t =Y!_,rib;, with r;,r/ € R, and set s*t =

i=1"i"i [}

X! rrib. Then B(s 1) = B(s)* B(¢), as is easily checked.
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4, CLASS FUNCTIONS ON SCHUR ALGEBRAS

Throughout this section, R is a commutative ring, G is a finite group,
and {E g € G} is a partition of G such that E; ! —E -1 and IE | is
invertible in R. Put S¢ = Lyep, U, IN RG, §, —IE s s,, and let G,
denote a set of representatlves of the dlstlnct E,. We assume that
§ = @, Rs, is asubalgebra with unit element, i.e., S is a Schur algebra
in RG. 'Note that 5, = 1i, see Lemma 1.3.

Recall that 7: § = R: X, g, 7,5, — 1. defines a symmetric associative
R-bilinear form b on § with dual bases {5,},{s,-:}. As in Section 3, let
z=DY,cq,55 and {1 S = Z(S): s = L, 5,551 Again, Z(S) de-
notes the center of S.

4.1. DeriNnITION.  We define an equivalence relation on G as follows:
g ~ h ifand only if f(5,) = f(5,) for all f € Sym(S, R). In this case we say
that g and h are S-conjugated (see also Note 4.12).

4.2. PROPOSITION.  Letg,h € G. If g ~ h, then {(5,) = {(5),). In case z
is invertible in S, the converse holds true.

Proof. The result follows from Proposition 3.9. |

4.3. Remark. Suppose R is connected and S = Endg(P,) & -+ &
EndR(Pq) as R-algebras, Py,..., P, being finitely generated projective
R-modules, and suppose that z is invertible in S. Then g ~ & if and only if
tp(5,) = 1p(5,) for i=1,...,q, see Theorem 3.10(6) and Proposition
3.12(2).

4.4. LEMMA. Letg,h € G. Ifg ~ h, theng ' ~ h™%.

Proof. Let f € Sym(S, R). Take the map 6: RG —> RG: L, r,u, =
Y,eg U1 and consider the restriction to S. By Lemma 1.4, f-0 €
Sym(S, R). Since g ~ h, we have (f e 6)(5,) = (f° 6)(5),). The statement
follows at once. |

For the remainder of this section, we fix the following notation. For
g € G, set K, ={h € G|g ~ h}. Obviously {K,; g € G} is a partition of
G and by Lemma44 K, 1=K, Putuo, = er]( u, and let G, denote
a set of representatives of the distinct Kg

We observe that K, = E, U --- U E,, in particular v, € S. Furthermore,
K, =E,. Indeed, 7(5, Y = IE |- 11R and 7(5,) = 0 for k¢ E,.

4.5. DEFINITION. Let f & §*. We say that f is a class function on § if
g ~ h in G implies that f(5,) = f(5,). The set of all class functions forms
an R-submodule of $*, denoted by Cf(S, R). Clearly Sym(S, R) c Cf(S, R).



612 DELVAUX AND NAUWELAERTS

4.6. ProposITION. (1) Z(S) € &, Ru,.
2 zs) =9 Ru, if and only if Sym(S, R) = Cf(S, R).

Proof. Consider the left S-linear map B: § — S* associated to 7 as in
Remarks 3.1. We know that 8 is bijective and B(Z(S)) = Sym(S, R), by
Lemma 3.4. It suffices to show that B(@®Rv,) = Cf(S, R). We have
B, )5,) = 7(5,v,) = 1for k € K,-» and 7(5,0,) = 0 for k & K,-1. Hence
,B(GBRUg) C Cf(S, R). For the reverse inclusion, use Lemma 3.3. |

g€Gy

At the end of this section we give an example to show that the inclusion
in Proposition 4.6(1) need not to be an equality. Our next objective is to
analyze the equality Z(S) = @ Rv,. We begin with a few remarks.

4.7. Remarks. (1) If s, € Z(S), then K, = E, by Proposition 4.6(1).

(2) It is easily verified that g“(vg) = IKglg(Eg). In particular, if v, €
Z(S), then zv, = |K,[{(5),).

@ If v, € Z(S) and z is invertible in S, then IK | is invertible in R.
Indeed, v, IK (G )z =K, E, e, vy with 7, eR whence 1 =
IKgIrg.

4.8. PROPOSITION. Suppose that z is invertible in S. Then Z(S) =
®,c, Ru, if and only if the distinct {(5,) are linearly independent over R.

Proof. By Proposition 4.2, {(5,), g € G,, are all distinct {(5,). Suppose
that {(5,), g € G,, are linearly independent over R. Let f € Cf(S, R). It
suffices to show that f is symmetric, see Proposition 4.6. Let x € S be
such that {(x) =0 and write x =Y, cs 78,7 €R. So 0= ¢(x) =
Yee6Zie g LG with J(g) = G, N K, whence ¥, ¢, 7 = 0. It
follows that f(x) = 0 and thus f is symmetric, see Proposition 3.8.

For the converse, use Remarks 4.7(2) and (3). |

As in Section 1, we may consider the following componentvvise multipli-
cation on RG. Let a,a’ € RG, a = L, r,u,, and a’ = X, . g ryu, With

rei Ty € R Then we define a+«a’ =X, r,rou,. Of course S is closed

under this multiplication.
4.9. PROPOSITION.  Suppose that R is a domain. If Z(S) is closed under
the above componentwise multiplication, then Z(S) = ®, . Ru,.

Proof. (1) We first assume that R is a field. Note that X, ; u, =
Yecq, S, € Z(RG) N S, hence T, . ; u, € Z(S). Then by Proposition 1.5,
there is a partition {F,; k € G} of G such that Z(S) = &, Rw, with
Wi = L, e U, Since Z(S) C ®,cq, Ry, each wy is a sum of certain v,.
Fix wy; say w, = v, I gl € G,. We now prove that m = 1.

Let f e Sym(S RB By Lemmas 3.3 and 3.4, ¢ — Lo, [(5,1)s, € Z(S),
and ¢ =X, g, f(5,-1)v,. But c=w, =rw, for some r e'R. Therefore
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f(§;1) = -+ = f(5,-1) = r. From this it follows that g, ~g;, i =1,...,m.
Consequently, m =1 and w, = v, Then, using X, w, = X, cq, U, We
obtain Z(S) = ©, ., Ru,.

(2) Now let R be a domain with field of quotients L. Consider the
Schur algebra § = @, Ls, in LS. We observe that Z(S) = Z(§) N S.
Then it is easily verified that Z(S) is closed under componentwise multipli-
cation in LG. Further, g, h € G are S-conjugated if and only if they are
S-conjugated. In order to prove this, one needs the following remarks. A
map f € Sym(S, R) can be extended to a map f € Sym(S, L) by setting
o, lis) = Tyeg, l,f(s). I, € L. On the other hand, let ¢ €
Sym(S, L). Then there exists r e R such that re(s,) € R for all g € G,,
and rels € Sym(S, R). The above discussion y|elds the equality Z(S) =
®,cq, Lv,. Consequently, v, € Z(8) NS = Z(S), as desired. 1

4.10. Remark. To the above defined componentwise multiplication on
RG there corresponds a multiplication on (RG)*; see Note 3.15(3). Namely,
let ¢, € (RG)*. Then ¢ ¢(u,1) = e(u,-)(u,-1), or equivalently,

wp(u,) = o(u)p(u,) for all g € G.

In the case where Z(S) = @ Rv, we can derive the second orthogonality
relations.

4.11. PROPOSITION.  Suppose R is connected and S = Endz(P,) & -+ &
Endi(P,) as R-algebras, Pi,..., P, being finitely generated projective R-
modules, and suppose that z is invertible in S. If Z(S) = @, Ruv,, then
for g, h € G, we have

q
)y |Kh|rank(Pi)tPl(Z)_1tP,(§g)tP,v(§h’l) = 3y
i=1
Proof. Note that |G,| = ¢g. By Theorem 3.10 and Proposition 3.12,
X rank(P)ip(2) tp(5,)p( s, 1) = 8
8€Gy

This gives
Y. rank(P)tp(2) 'tp(5, o )ip(Ug1) = 8

8€Gy

and tP(u 1) =K, ItP(s -1). We can write this relation as AB =1; A, B
being q X q matrlces Then BA = I, which implies the desired formula. |

4.12. Note. We discuss the case where S = RG. Here, g,h € G are
RG-conjugated if and only if 4 = tgt~* for some ¢ € G. Indeed, suppose
that f(u,) = f(u,) for all fe€ Sym(RG, R). In other words, 7(u,c) =
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7(u,c) for all c € Z(RG), see Lemma 3.4. Let s denote the sum in RG of
all distinct conjugates kg~ 'k™*, k € G. Clearly, s € Z(RG) and 7(u,s) =
1. Consequently, 7(u,s) = 1, whence tg~'¢t~* = h~! for some ¢ € G. The
converse is obvious.

With notation as before, we have v, € Z(RG) and Z(RG) =
®, ., Rv,. Moreover, {(u,) = [Cg(glv,.

Let us now focus on the case where S is a double coset algebra. So let H
be a subgroup of G with |H|™! e R, put & = IHI_thE u Uy, and consider
S = ¢RGe, see also Section 2.

Let Z(S) and 7 be as before, and put 5, = IHngfliergH u,, for
g<€G.

For RG-conjugacy we now set C, = {tkt |t € G} and w, = Licc, Us
with k € G.

4.13. PROPOSITION. Consider S = eRGe and let g,, g, € G.
(1) Ifg, and g, are S-conjugated, then

|Hg,H| '|Hg,H N C, 11, = |Hg,H| ‘|Hg,H N C,[1,

for any RG-conjugacy class C,.

(2) If R is connected and R is a splitting ring for RG, then the converse
of (1) holds.

Proof. Note that g, and g, are S-conjugated if and only if (5, c) =
7(5,,¢) for all ¢ € Z(S), see Lemma 3.4.

(1) Clearly &w, € Z(S). Further, 7(5,ew,) = 7(5,w,) =
|HgH | *|HgH N C,1[1,. The assertion now follows.

(2) It suffices to show that ew,, k € G, generate Z(S) as R-module.
Let{ey, ..., e } be the set of primitive central nonzero idempotents of RG,
and let ge; # 0 for i = 1,...,m. Take a € Z(S). By Theorem 2.5(1)—(3),
we have a = X" | r;ee; with r; € R. Moreover, ¢; = Xr,w, with r, € R.

l

We conclude this section with a concrete example of the above situation,
based on [15]. This example shows that the inclusion in Proposition 4.6(1)
need not to be an equality.

ExampLE. Consider in GL,(Z,), the matrices

1 0 O 1 0 O
a=(1 1 o), b=[0 1 0],

0 0 1 0 1 1
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1 0 O 1 0 O
c=10 1 0f, d=10 2 0].
1 0 1 0 0 1

Let G = <a, b,d). We have the relations a® = b3 =1, d*> = I, da = a’d,
and db = b?d. Further, ¢ =bab 'a™', ¢®*=1, and ¢ commutes with
a,b,d. So each element of G can be expressed as a'b/d*c' with i, j,[ =
0,1,2and k =0, 1.

Nowlet H = (d), put & = 3(u; + u,) in CG, and consider S = &(CG)e.
Using Proposition 4.13 and the RG-conjugacy classes C, and C,, it is easy
to check that the S-conjugacy class K, of a is equal to HaH. However,
HaH=Y _ 4 u, does not commute with HbH, and thus HaH & Z(S).

5. TRACE FUNCTIONS OF INDUCED MODULES

Throughout this section, R is a commutative ring, G is a finite group,
and H is a subgroup of G. Let S be a Schur algebra in RG with
associated partition {E,; g € G} and let B be a Schur algebra in RH with
partition {F,; h € H}. Further, let G,, resp. H,, denote a set of represen-
tatives of the distinct E,, resp. Fj. Put s, = X . u,and b, =X, u,.

5.1. DerINITION.  The Schur algebra B is called a Schur subalgebra of
§ if for each h € H we have F, = UE,, for some g € G.

For the remainder of this section, we assume that B is a Schur
subalgebra of S. We also assume |E,|™" € R and |F,[™" € R for all
g€ G, heH Weset§, =|E| 's,, analogously b,.

5.2. DEFINITION.  Let f € Hom (B, R). We define f € Hom (S, R) as
follows: f(&‘g) =0if g& H and f~(§‘g) =f(Bg) if g € H, and extend by
linearity. -

We observe that f|z = f.

Under certain conditions, we shall derive a formula for the trace
function of an induced module. We set zg = Y, g, 5,5, and zp =
ey bubyr.

5.3. PROPOSITION.  Assume that F, = E, and that zg is invertible in S.
Suppose R is connected and finitely generated projective R-modules are free.
Further, suppose S = @]_; Endg(M;) and B = @_, End,(N,) as R-
algebras, where M, N; are finitely generated projective R-modules. Set NS =
S ® N, Then

ty,(2)ty; = rankg(N,)(7y,°¢)  on,

where {1 S = Z(8): x = L, c g, 5,x5,-1.
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Proof. Recall that N, is an indecomposable left B-module (similar

remark for M;). Combining Remark 3.11(3) and Proposition 3.12, we have
forany x € §

q
{(x) =) tM/_(x)( Y tM/_(ngl)g\g).
j=1 g€Gy
Applying 7N,. to this expression yields

éer(x)( T ty(se (B

geGyNH

TN,(g(x))

II
M»&

M(x)( )y fo(bgl)tNi(Bg))'

j=1 g§E€H,

By the hypothesis on R, we have M|z = @, Niv as left B-modules,
where ¢, ; € N. Thus Iy, = L ¢jty, ON B. Usmg the orthogonality rela-
tions, Theorem 3.10(2) and Proposmon 3.12(1), we then obtain

rankR(]Vi)?N,-( {(x)) = ; tM,(x)cith,(ZB)'

By the hypothesis on R, we can apply a version of Frobenius reciprocity,
see [3, 1.2]. This gives ty, = L9_y ¢ty which completes the proof. [l

To conclude, let S = RG and B = RH. In this case we have zg = |Glu,
and z, = |H|u,. With hypotheses and notation as in Proposition 5.3 (in
particular |G|™* € R), we now obtain

|ty (u,) =?N,-( Y ugngl), forxe G
geG

(use also Proposition 3.12(2)). Of course, this formula can be proved
without any assumption (N being a left RH-module, which is finitely
generated and projective over R).
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