10 research outputs found

    LWIR detector requirements for low-background space applications

    Get PDF
    Detection of cold bodies (200 to 300 K) against space backgrounds has many important applications, both military and non-military. The detector performance and design characteristics required to support low-background applications are discussed, with particular emphasis on those characteristics required for space surveillance. The status of existing detector technologies under active development for these applications is also discussed. In order to play a role in future systems, new, potentially competing detector technologies such as multiple quantum well detectors must not only meet system-derived requirements, but also offer distinct performance or other advantages over these incumbent technologies

    Early On-Orbit Performance of the Visible Infrared Imaging Radiometer Suite Onboard the Suomi National Polar-Orbiting Partnership (S-NPP) Satellite

    Get PDF
    The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of the key environmental remote-sensing instruments onboard the Suomi National Polar-Orbiting Partnership spacecraft, which was successfully launched on October 28, 2011 from the Vandenberg Air Force Base, California. Following a series of spacecraft and sensor activation operations, the VIIRS nadir door was opened on November 21, 2011. The first VIIRS image acquired signifies a new generation of operational moderate resolution-imaging capabilities following the legacy of the advanced very high-resolution radiometer series on NOAA satellites and Terra and Aqua Moderate-Resolution Imaging Spectroradiometer for NASA's Earth Observing system. VIIRS provides significant enhancements to the operational environmental monitoring and numerical weather forecasting, with 22 imaging and radiometric bands covering wavelengths from 0.41 to 12.5 microns, providing the sensor data records for 23 environmental data records including aerosol, cloud properties, fire, albedo, snow and ice, vegetation, sea surface temperature, ocean color, and nigh-time visible-light-related applications. Preliminary results from the on-orbit verification in the postlaunch check-out and intensive calibration and validation have shown that VIIRS is performing well and producing high-quality images. This paper provides an overview of the onorbit performance of VIIRS, the calibration/validation (cal/val) activities and methodologies used. It presents an assessment of the sensor initial on-orbit calibration and performance based on the efforts from the VIIRS-SDR team. Known anomalies, issues, and future calibration efforts, including the long-term monitoring, and intercalibration are also discussed

    Development of Level 2 Calibration and Validation Plans for GOES-R; What is a RIMP?

    Get PDF
    Calibration and Validation (CalVal) plans for Geostationary Operational Environmental Satellite version R (GOES-R) Level 2 (L2) products were documented via Resource, Implementation, and Management Plans (RIMPs) for all of the official L2 products required from the GOES-R Advanced Baseline Imager (ABI). In 2015 the GOES-R program decided to replace the typical CalVal plans with RIMPs that covered, for a given L2 product, what was required from that product, how it would be validated, and what tools would be used to do so. Similar to Level 1b products, the intent was to cover the full spectrum of planning required for the CalVal of L2 ABI products. Instead of focusing on step-by-step procedures, the RIMPs concentrated on the criteria for each stage of the validation process (Beta, Provisional, and Full Validation) and the many elements required to prove when each stage was reached

    Results from Solar Reflective Band End-to-End Testing for VIIRS F1 Sensor Using T-SIRCUS

    Get PDF
    Verification of the Visible Infrared Imager Radiometer Suite (VIIRS) End-to-End (E2E) sensor calibration is highly recommended before launch, to identify any anomalies and to improve our understanding of the sensor on-orbit calibration performance. E2E testing of the Reflective Solar Bands (RSB) calibration cycle was performed pre-launch for the VIIRS Fight 1 (F1) sensor at the Ball Aerospace facility in Boulder CO in March 2010. VIIRS reflective band calibration cycle is very similar to heritage sensor MODIS in that solar illumination, via a diffuser, is used to correct for temporal variations in the instrument responsivity. Monochromatic light from the NIST T-SIRCUS was used to illuminate both the Earth View (EV), via an integrating sphere, and the Solar Diffuser (SD) view, through a collimator. The collimator illumination was cycled through a series of angles intended to simulate the range of possible angles for which solar radiation will be incident on the solar attenuation screen on-orbit. Ideally, the measured instrument responsivity (defined here as the ratio of the detector response to the at-sensor radiance) should be the same whether the EV or SD view is illuminated. The ratio of the measured responsivities was determined at each collimator angle and wavelength. In addition, the Solar Diffuser Stability Monitor (SDSM), a ratioing radiometer designed to track the temporal variation in the SD BRF by direct comparison to solar radiation, was illuminated by the collimator. The measured SDSM ratio was compared to the predicted ratio. An uncertainty analysis was also performed on both the SD and SDSM calibrations

    Characteristics of AlGaAs/GaAs multiple quantum well infrared detectors

    Get PDF
    Researchers fabricated and characterized several AlGaAs/GaAs multiple quantum well infrared detectors to evaluate the ultimate performance of these devices for low infrared background applications. The detectors were designed to have a single bound state in the quantum well and the first excited state in the continuum above the AlGaAs conduction band edge. The difference in energy between the two levels, as determined by the quantum well width and aluminum mole fraction in the barrier, was chosen such that peak absorption would occur near 8 microns. The initial structures studied comprised 50 periods with 40 A well widths and 300 A Al(0.28)Ga(0.72)As barriers. The performance of these detectors are summarized. To better interpret these results and design optimized detectors, researchers modeled both the detector noise and tunneling currents. The noise model correctly predicts that multiple quantum well detectors will, indeed, exhibit noise lower than full shot noise. The tunneling current model predicts the dark current versus bias for any choice of design parameters in a multiple quantum well detector. This model predicts a substantially reduced dark current (x 10(exp 04)) for samples with 400 A barriers. To evaluate structures with thicker barriers, researchers fabricated and characterized detectors with 400 A and 500 A barriers; a comparison of detector dark currents is shown. These results are consistent with the predictions of the dark current model

    Initial Navigation Alignment of Optical Instruments on GOES-R

    Get PDF
    Post-launch alignment errors for the Advanced Baseline Imager (ABI) and Geospatial Lightning Mapper (GLM) on GOES-R may be too large for the image navigation and registration (INR) processing algorithms to function without an initial adjustment to calibration parameters. We present an approach that leverages a combination of user-selected image-to-image tie points and image correlation algorithms to estimate this initial launch-induced offset and calculate adjustments to the Line of Sight Motion Compensation (LMC) parameters. We also present an approach to generate synthetic test images, to which shifts and rotations of known magnitude are applied. Results of applying the initial alignment tools to a subset of these synthetic test images are presented. The results for both ABI and GLM are within the specifications established for these tools, and indicate that application of these tools during the post-launch test (PLT) phase of GOES-R operations will enable the automated INR algorithms for both instruments to function as intended

    Development of Level 1b Calibration and Validation Readiness, Implementation and Management Plans for GOES-R

    Get PDF
    A complement of Readiness, Implementation and Management Plans (RIMPs) to facilitate management of post-launch product test activities for the official Geostationary Operational Environmental Satellite (GOES-R) Level 1b (L1b) products have been developed and documented. Separate plans have been created for each of the GOES-R sensors including: the Advanced Baseline Imager (ABI), the Extreme ultraviolet and X-ray Irradiance Sensors (EXIS), Geostationary Lightning Mapper (GLM), GOES-R Magnetometer (MAG), the Space Environment In-Situ Suite (SEISS), and the Solar Ultraviolet Imager (SUVI). The GOES-R program has implemented these RIMPs in order to address the full scope of CalVal activities required for a successful demonstration of GOES-R L1b data product quality throughout the three validation stages: Beta, Provisional and Full Validation. For each product maturity level, the RIMPs include specific performance criteria and required artifacts that provide evidence a given validation stage has been reached, the timing when each stage will be complete, a description of every applicable Post-Launch Product Test (PLPT), roles and responsibilities of personnel, upstream dependencies, and analysis methods and tools to be employed during validation. Instrument level Post-Launch Tests (PLTs) are also referenced and apply primarily to functional check-out of the instruments

    Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for the GOES-R Advanced Baseline Imager and Geostationary Lightning Mapper

    Get PDF
    The GOES-R Flight Project has developed an Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for measuring Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM) INR performance metrics in the post-launch period for performance evaluation and long term monitoring. For ABI, these metrics are the 3-sigma errors in navigation (NAV), channel-to-channel registration (CCR), frame-to-frame registration (FFR), swath-to-swath registration (SSR), and within frame registration (WIFR) for the Level 1B image products. For GLM, the single metric of interest is the 3-sigma error in the navigation of background images (GLM NAV) used by the system to navigate lightning strikes. 3-sigma errors are estimates of the 99.73rd percentile of the errors accumulated over a 24 hour data collection period. IPATS utilizes a modular algorithmic design to allow user selection of data processing sequences optimized for generation of each INR metric. This novel modular approach minimizes duplication of common processing elements, thereby maximizing code efficiency and speed. Fast processing is essential given the large number of sub-image registrations required to generate INR metrics for the many images produced over a 24 hour evaluation period. Another aspect of the IPATS design that vastly reduces execution time is the off-line propagation of Landsat based truth images to the fixed grid coordinates system for each of the three GOES-R satellite locations, operational East and West and initial checkout locations. This paper describes the algorithmic design and implementation of IPATS and provides preliminary test results

    The Stability of Cyclodextrin Complexes in Solution

    No full text
    corecore