3,656 research outputs found

    Nonlinear Force-Free Field Modeling of the Solar Magnetic Carpet and Comparison with SDO/HMI and Sunrise/IMaX Observations

    Full text link
    In the quiet solar photosphere, the mixed polarity fields form a magnetic carpet, which continuously evolves due to dynamical interaction between the convective motions and magnetic field. This interplay is a viable source to heat the solar atmosphere. In this work, we used the line-of-sight (LOS) magnetograms obtained from the Helioseismic and Magnetic Imager (HMI) on the \textit{Solar Dynamics Observatory} (\textit{SDO}), and the Imaging Magnetograph eXperiment (IMaX) instrument on the \textit{Sunrise} balloon-borne observatory, as time dependent lower boundary conditions, to study the evolution of the coronal magnetic field. We use a magneto-frictional relaxation method, including hyperdiffusion, to produce time series of three-dimensional (3D) nonlinear force-free fields from a sequence of photospheric LOS magnetograms. Vertical flows are added up to a height of 0.7 Mm in the modeling to simulate the non-force-freeness at the photosphere-chromosphere layers. Among the derived quantities, we study the spatial and temporal variations of the energy dissipation rate, and energy flux. Our results show that the energy deposited in the solar atmosphere is concentrated within 2 Mm of the photosphere and there is not sufficient energy flux at the base of the corona to cover radiative and conductive losses. Possible reasons and implications are discussed. Better observational constraints of the magnetic field in the chromosphere are crucial to understand the role of the magnetic carpet in coronal heating.Comment: Accepted for publication in The Astrophysical Journal (13 pages, 10 figures

    StemNet: An Evolving Service for Knowledge Networking in the Life Sciences

    Get PDF
    Up until now, crucial life science information resources, whether bibliographic or factual databases, are isolated from each other. Moreover, semantic metadata intended to structure their contents is supplied in a manual form only. In the StemNet project we aim at developing a framework for semantic interoperability for these resources. This will facilitate the extraction of relevant information from textual sources and the generation of semantic metadata in a fully automatic manner. In this way, (from a computational perspective) unstructured life science documents are linked to structured biological fact databases, in particular to the identifiers of genes, proteins, etc. Thus, life scientists will be able to seamlessly access information from a homogeneous platform, despite the fact that the original information was unlinked and scattered over the whole variety of heterogeneous life science information resources and, therefore, almost inaccessible for integrated systematic search by academic, clinical, or industrial users

    The Relation between Solar Eruption Topologies and Observed Flare Features I: Flare Ribbons

    Full text link
    In this paper we present a topological magnetic field investigation of seven two-ribbon flares in sigmoidal active regions observed with Hinode, STEREO, and SDO. We first derive the 3D coronal magnetic field structure of all regions using marginally unstable 3D coronal magnetic field models created with the flux rope insertion method. The unstable models have been shown to be a good model of the flaring magnetic field configurations. Regions are selected based on their pre-flare configurations along with the appearance and observational coverage of flare ribbons, and the model is constrained using pre-flare features observed in extreme ultraviolet and X-ray passbands. We perform a topology analysis of the models by computing the squashing factor, Q, in order to determine the locations of prominent quasi-separatrix layers (QSLs). QSLs from these maps are compared to flare ribbons at their full extents. We show that in all cases the straight segments of the two J-shaped ribbons are matched very well by the flux-rope-related QSLs, and the matches to the hooked segments are less consistent but still good for most cases. In addition, we show that these QSLs overlay ridges in the electric current density maps. This study is the largest sample of regions with QSLs derived from 3D coronal magnetic field models, and it shows that the magnetofrictional modeling technique that we employ gives a very good representation of flaring regions, with the power to predict flare ribbon locations in the event of a flare following the time of the model

    2-methylene-(20S,25S)-19,27-dinor-(22E)-vitamin D analogs

    Get PDF
    This invention discloses 2-methylene-(20S,25S)-19,27-dinor-(22E)-vitamin D analogs, and specifically 2-methylene-(20S,25S)-19,27-dinor-(22E)-1.alpha.,25-dihydroxyvitamin D.sub.3, and pharmaceutical uses therefor. This compound exhibits pronounced activity in arresting the proliferation of undifferentiated cells and inducing their differentiation to the monocyte thus evidencing use as an anti-cancer agent and for the treatment of skin diseases such as psoriasis as well as skin conditions such as wrinkles, slack skin, dry skin and insufficient sebum secretion. This compound also has little, if any, calcemic activity and therefore may be used to treat autoimmune disorders or inflammatory diseases in humans as well as renal osteodystrophy. This compound may also be used for the treatment or prevention of obesity

    The Vela Pulsar and its Synchrotron Nebula

    Full text link
    (Abridged) We present high-resolution Chandra X-ray observations of PSR B0833-45, the 89 ms pulsar associated with the Vela supernova remnant. We have acquired two observations separated by one month to search for changes in the pulsar and its environment following an extreme glitch in its rotation frequency. We find a well-resolved nebula with a toroidal morphology remarkably similar to that observed in the Crab Nebula, along with an axial Crab-like jet. Between the two observations the flux from the pulsar is found to be steady to within 0.75%; the 3 sigma limit on the fractional increase in the pulsar's X-ray flux is < ~10^-5 of the inferred glitch energy. We use this limit to constrain parameters of glitch models and neutron star structure. We do find a significant increase in the flux of the nebula's outer arc; if associated with the glitch, the inferred propagation velocity is > 0.7c, similar to that seen in the brightening of the Crab Nebula wisps. We propose an explanation for the X-ray structure of the Vela synchrotron nebula based on a model originally developed for the Crab Nebula. In a departure from the Crab model, the magnetization parameter "sigma" of the Vela pulsar wind is allowed to be of order unity; this is consistent with the simplest MHD transport of magnetic field from the pulsar to the nebula, where B < 4 X 10^-4 G. We review effects that may enhance the probability of alignment between the spin axis and space velocity of a pulsar, and speculate that short-period, slowly moving pulsars are just the ones best-suited to producing synchrotron nebulae with such aligned structures.Comment: 16 pages with 8 figures, uses LaTex, emulateapj.sty. Refereed version. To appear in The Astrophysical Journa

    Cost-Effective Cloud Computing: A Case Study Using the Comparative Genomics Tool, Roundup

    Get PDF
    Background Comparative genomics resources, such as ortholog detection tools and repositories are rapidly increasing in scale and complexity. Cloud computing is an emerging technological paradigm that enables researchers to dynamically build a dedicated virtual cluster and may represent a valuable alternative for large computational tools in bioinformatics. In the present manuscript, we optimize the computation of a large-scale comparative genomics resource—Roundup—using cloud computing, describe the proper operating principles required to achieve computational efficiency on the cloud, and detail important procedures for improving cost-effectiveness to ensure maximal computation at minimal costs. Methods Utilizing the comparative genomics tool, Roundup, as a case study, we computed orthologs among 902 fully sequenced genomes on Amazon's Elastic Compute Cloud. For managing the ortholog processes, we designed a strategy to deploy the web service, Elastic MapReduce, and maximize the use of the cloud while simultaneously minimizing costs. Specifically, we created a model to estimate cloud runtime based on the size and complexity of the genomes being compared that determines in advance the optimal order of the jobs to be submitted. Results We computed orthologous relationships for 245,323 genome-to-genome comparisons on Amazon's computing cloud, a computation that required just over 200 hours and cost $8,000 USD, at least 40% less than expected under a strategy in which genome comparisons were submitted to the cloud randomly with respect to runtime. Our cost savings projections were based on a model that not only demonstrates the optimal strategy for deploying RSD to the cloud, but also finds the optimal cluster size to minimize waste and maximize usage. Our cost-reduction model is readily adaptable for other comparative genomics tools and potentially of significant benefit to labs seeking to take advantage of the cloud as an alternative to local computing infrastructure

    Characterization of the Inner Knot of the Crab: The Site of the Gamma-ray Flares?

    Get PDF
    One of the most intriguing results from the gamma-ray instruments in orbit has been the detection of powerful flares from the Crab Nebula. These flares challenge our understanding of pulsar wind nebulae and models for particle acceleration. We report on the portion of a multiwavelength campaign using Keck, HST, and Chandra concentrating on a small emitting region, the Crab's inner knot, located a fraction of an arcsecond from the pulsar. We find that the knot's radial size, tangential size, peak flux, and the ratio of the flux to that of the pulsar are correlated with the projected distance of the knot from the pulsar. A new approach, using singular value decomposition for analyzing time series of images, was introduced yielding results consistent with the more traditional methods while some uncertainties were substantially reduced. We exploit the characterization of the knot to discuss constraints on standard shock-model parameters that may be inferred from our observations assuming the inner knot lies near to the shocked surface. These include inferences as to wind magnetization, shock shape parameters such as incident angle and poloidal radius of curvature, as well as the IR/optical emitting particle enthalpy fraction. We find that while the standard shock model gives good agreement with observation in many respects, there remain two puzzles: (a) The observed angular size of the knot relative to the pulsar--knot separation is much smaller than expected; (b) The variable, yet high degree of polarization reported is difficult to reconcile with a highly relativistic downstream flow.Comment: 46 pages, 14 figures, submitted to the Astrophysical Journa
    • …
    corecore