41 research outputs found

    Investigation of the closed loop control of a pneumatic conveying system using tomographic imaging

    No full text
    The subject of pneumatic conveying of solids is a complex one. The flow regime present in a conveying system is dependent upon: the size and shape of the particles to be conveyed, the geometry and orientation of the conveying pipe, the relative densities of the solid and the conveying air. The variable parameters present are the velocity of the conveying air and the solids mass flow rate. The variation of these two factors dictates the presence of either dilute or dense phase flow. At Manchester Metropolitan University a pneumatic conveying system transporting polyethylene nibs, was used to investigate the implementation of a Proportional and Integral control system using a tomographic imaging system in the feedback loop. The aim of the investigative work was to achieve control of the air velocity and solids loading factor for the conveying system to maintain dilute phase flow at a prescribed level. The solids material conveyed was sensed using a PC based electrical tomographic imaging system and this was used to control the air velocity in the conveying system

    Closed loop control of a pneumatic conveying system using tomographic imaging

    No full text
    The subject of pneumatic conveying of solids is a complex one. The flow regime present in a conveying system is dependent upon: the size and shape of the particles to be conveyed, the geometry and orientation of the conveying pipe, the relative densities of the solid and the conveying air. The variable parameters present are the velocity of the conveying air and the solids mass flow rate. The variation of these two factors dictates the presence of either dilute or dense phase flow. At Manchester Metropolitan University a pneumatic conveying system transporting polyethylene nibs, was used to investigate the implementation of a Proportional and Integral control system using a tomographic imaging system in the feedback loop. The aim of the investigative work was to achieve control of the air velocity and solids loading factor for the conveying system to maintain dilute phase flow at a prescribed level. The solids material conveyed was sensed using a PC based electrical tomographic imaging system and this was used to control the air velocity in the conveying system

    Variable density flowmeter for loading road tankers using process tomography

    No full text
    Montell Carrington Limited produces polyethylene and polypropylene nibs, which are sold in bulk form to companies who use them to make products for the consumer market. The nibs are stored in 30 storage bunkers, each with a capacity of 500 tonnes. The external distribution of nibs is achieved using 40 tonne road tankers that are filled from each of the bunkers using gravity feed.Work has been undertaken at the Manchester Metropolitan University, in collaboration with Montell, to develop a Variable Density Flowmeter using Process Tomography that will enable the mass flow of nibs to be measured with an accuracy of ±2% and hence control the loading of the road tankers. The flowmeter (260mm diameter) was situated between the bunker discharge outlet valve and the tanker. Measurement of the density distribution across the pipe, using Process Tomography, enabled the mass flow into the road tankers to be determined. The Montell Process Tomography (MPT) system was a PC based system incorporating Texas Instruments C40 parallel processors and a 12 electrode capacitance measuring system with a driven axial shield. The capacitance detector was an AC bridge detection circuit working at 100kHz, a demodulator and a back projection algorithm were used to obtain the process images

    High-precision current conveyor implementation employing a current-steering output stage

    No full text
    An improved current conveyor circuit topology based around the use of a current-steering output stage, rather than the more usual current mirrors, is described in this paper. The primary benefit of this approach is a significantly enhanced current transfer linearity through reduced reliance on output-device matching requirements. Outline performance details are given for a discrete version of the circuit and a prototype IC fabricated using this technique

    Professional codes of conduct and computer ethics education

    No full text

    Professional codes of conduct and computer ethics education

    No full text
    corecore