454 research outputs found
Fully Dynamic Maintenance of Arc-Flags in Road Networks
International audienceThe problem of finding best routes in road networks can be solved by applying Dijkstra's shortest paths algorithm. Unfortunately, road networks deriving from real-world applications are huge yielding unsustainable times to compute shortest paths. For this reason, great research efforts have been done to accelerate Dijkstra's algorithm on road networks. These efforts have led to the development of a number of speed-up techniques, as for example Arc-Flags, whose aim is to compute additional data in a preprocessing phase in order to accelerate the shortest paths queries in an on-line phase. The main drawback of most of these techniques is that they do not work well in dynamic scenarios. In this paper we propose a new algorithm to update the Arc-Flags of a graph subject to edge weight decrease operations. To check the practical performances of the new algorithm we experimentally analyze it, along with a previously known algorithm for edge weight increase operations, on real-world road networks subject to fully dynamic sequences of operations. Our experiments show a significant speed-up in the updating phase of the Arc-Flags, at the cost of a small space and time overhead in the preprocessing phase
Distance Oracles for Time-Dependent Networks
We present the first approximate distance oracle for sparse directed networks
with time-dependent arc-travel-times determined by continuous, piecewise
linear, positive functions possessing the FIFO property.
Our approach precomputes approximate distance summaries from
selected landmark vertices to all other vertices in the network. Our oracle
uses subquadratic space and time preprocessing, and provides two sublinear-time
query algorithms that deliver constant and approximate
shortest-travel-times, respectively, for arbitrary origin-destination pairs in
the network, for any constant . Our oracle is based only on
the sparsity of the network, along with two quite natural assumptions about
travel-time functions which allow the smooth transition towards asymmetric and
time-dependent distance metrics.Comment: A preliminary version appeared as Technical Report ECOMPASS-TR-025 of
EU funded research project eCOMPASS (http://www.ecompass-project.eu/). An
extended abstract also appeared in the 41st International Colloquium on
Automata, Languages, and Programming (ICALP 2014, track-A
Cellular aspect ratio and cell division mechanics underlie the patterning of cell progeny in diverse mammalian epithelia.
Cell division is essential to expand, shape, and replenish epithelia. In the adult small intestine, cells from a common progenitor intermix with other lineages, whereas cell progeny in many other epithelia form contiguous patches. The mechanisms that generate these distinct patterns of progeny are poorly understood. Using light sheet and confocal imaging of intestinal organoids, we show that lineages intersperse during cytokinesis, when elongated interphase cells insert between apically displaced daughters. Reducing the cellular aspect ratio to minimize the height difference between interphase and mitotic cells disrupts interspersion, producing contiguous patches. Cellular aspect ratio is similarly a key parameter for division-coupled interspersion in the early mouse embryo, suggesting that this physical mechanism for patterning progeny may pertain to many mammalian epithelia. Our results reveal that the process of cytokinesis in elongated mammalian epithelia allows lineages to intermix and that cellular aspect ratio is a critical modulator of the progeny pattern
Molecular dynamics of ion transport through the open conformation of a bacterial voltage-gated sodium channel
The crystal structure of the open conformation of a bacterial voltage-gated sodium channel pore from Magnetococcus sp. (NaVMs) has provided the basis for a molecular dynamics study defining the channel’s full ion translocation pathway and conductance process, selectivity, electrophysiological characteristics, and ion-binding sites. Microsecond molecular dynamics simulations permitted a complete time-course characterization of the protein in a membrane system, capturing the plethora of conductance events and revealing a complex mixture of single and multi-ion phenomena with decoupled rapid bidirectional water transport. The simulations suggest specific localization sites for the sodium ions, which correspond with experimentally determined electron density found in the selectivity filter of the crystal structure. These studies have also allowed us to identify the ion conductance mechanism and its relation to water movement for the NavMs channel pore and to make realistic predictions of its conductance properties. The calculated single-channel conductance and selectivity ratio correspond closely with the electrophysiology measurements of the NavMs channel expressed in HEK 293 cells. The ion translocation process seen in this voltage-gated sodium channel is clearly different from that exhibited by members of the closely related family of voltage-gated potassium channels and also differs considerably from existing proposals for the conductance process in sodium channels. These studies simulate sodium channel conductance based on an experimentally determined structure of a sodium channel pore that has a completely open transmembrane pathway and activation gate
Size reduction of complex networks preserving modularity
The ubiquity of modular structure in real-world complex networks is being the
focus of attention in many trials to understand the interplay between network
topology and functionality. The best approaches to the identification of
modular structure are based on the optimization of a quality function known as
modularity. However this optimization is a hard task provided that the
computational complexity of the problem is in the NP-hard class. Here we
propose an exact method for reducing the size of weighted (directed and
undirected) complex networks while maintaining invariant its modularity. This
size reduction allows the heuristic algorithms that optimize modularity for a
better exploration of the modularity landscape. We compare the modularity
obtained in several real complex-networks by using the Extremal Optimization
algorithm, before and after the size reduction, showing the improvement
obtained. We speculate that the proposed analytical size reduction could be
extended to an exact coarse graining of the network in the scope of real-space
renormalization.Comment: 14 pages, 2 figure
Advanced Multilevel Node Separator Algorithms
A node separator of a graph is a subset S of the nodes such that removing S
and its incident edges divides the graph into two disconnected components of
about equal size. In this work, we introduce novel algorithms to find small
node separators in large graphs. With focus on solution quality, we introduce
novel flow-based local search algorithms which are integrated in a multilevel
framework. In addition, we transfer techniques successfully used in the graph
partitioning field. This includes the usage of edge ratings tailored to our
problem to guide the graph coarsening algorithm as well as highly localized
local search and iterated multilevel cycles to improve solution quality even
further. Experiments indicate that flow-based local search algorithms on its
own in a multilevel framework are already highly competitive in terms of
separator quality. Adding additional local search algorithms further improves
solution quality. Our strongest configuration almost always outperforms
competing systems while on average computing 10% and 62% smaller separators
than Metis and Scotch, respectively
Enhance the Efficiency of Heuristic Algorithm for Maximizing Modularity Q
Modularity Q is an important function for identifying community structure in
complex networks. In this paper, we prove that the modularity maximization
problem is equivalent to a nonconvex quadratic programming problem. This result
provide us a simple way to improve the efficiency of heuristic algorithms for
maximizing modularity Q. Many numerical results demonstrate that it is very
effective.Comment: 9 pages, 3 figure
Recent Advances in Graph Partitioning
We survey recent trends in practical algorithms for balanced graph
partitioning together with applications and future research directions
Algorithm Engineering in Robust Optimization
Robust optimization is a young and emerging field of research having received
a considerable increase of interest over the last decade. In this paper, we
argue that the the algorithm engineering methodology fits very well to the
field of robust optimization and yields a rewarding new perspective on both the
current state of research and open research directions.
To this end we go through the algorithm engineering cycle of design and
analysis of concepts, development and implementation of algorithms, and
theoretical and experimental evaluation. We show that many ideas of algorithm
engineering have already been applied in publications on robust optimization.
Most work on robust optimization is devoted to analysis of the concepts and the
development of algorithms, some papers deal with the evaluation of a particular
concept in case studies, and work on comparison of concepts just starts. What
is still a drawback in many papers on robustness is the missing link to include
the results of the experiments again in the design
Analytic philosophy for biomedical research: the imperative of applying yesterday's timeless messages to today's impasses
The mantra that "the best way to predict the future is to invent it" (attributed to the computer scientist Alan Kay) exemplifies some of the expectations from the technical and innovative sides of biomedical research at present. However, for technical advancements to make real impacts both on patient health and genuine scientific understanding, quite a number of lingering challenges facing the entire spectrum from protein biology all the way to randomized controlled trials should start to be overcome. The proposal in this chapter is that philosophy is essential in this process. By reviewing select examples from the history of science and philosophy, disciplines which were indistinguishable until the mid-nineteenth century, I argue that progress toward the many impasses in biomedicine can be achieved by emphasizing theoretical work (in the true sense of the word 'theory') as a vital foundation for experimental biology. Furthermore, a philosophical biology program that could provide a framework for theoretical investigations is outlined
- …
