331 research outputs found

    Weighted multi-resolution phase-unwrapping method

    Get PDF
    The proposed method for phase unwrapping is based on a global analysis of the interferometrical phase. The underlying principle is that the interferogram is partitioned such that the unwrapped-phase function on each element can be locally modelled by the mean values of the phase difference between neighbouring pixels in azimuth and range directions. Using this local information and a least-squares algorithm (Gauss-Seidel relaxation), an approximate model of the unwrapped phase is then generated and tested by calculating the “residue image” defined as the difference between the original interferogram and the model itself. If there are residual fringes, then the result must be iteratively refined applying the method to the residue image. The accuracy of the proposed estimation depends on the dimensions of the elements and the dynamic content of the phase, i.e. on the “roughness” of the ground surface

    Effect of interchain separation on the photoinduced absorption spectra of polycarbazolyldiacetylenes

    Get PDF
    The photoinduced absorption spectra of a novel polycarbazolyldiacetylene with long aliphatic chains on the carbazolyl side groups are measured and compared with those of the unsubstituted polyDCHD. The two polymers in the blue form exhibit very similar electronic absorption spectra and Raman frequencies. This fact indicates that the conjugation length of the polydiacetylene backbone is not too affected by the long substituents. In contrast, the near steady-state photoinduced absorption spectra show that different photogeneration mechanisms are involved in the two polymers. This result can be ascribed to the role played by the interchain distance in the dynamics of the relaxation processes in polydiacetylenes

    What determines the suspension of budget support?

    Get PDF
    Although Budget Support (BS) was not designed to push political reform in recipient countries, donors have nonetheless used it to sanction democratic regress. An econometric analysis of all BS suspensions by bilateral donors in the period 2000–11 finds that suspensions effectively do reflect downward tendencies in voice and accountability, and in level of democratic functioning. The larger the in-country BS donor group, the more suspensions. Interestingly, ideological alignment between donor and recipient and aid dependence decrease the likelihood for suspensions, while domestic donor economic growth increases it; and multilateral suspensions have the largest positive effect of all

    Data Fusion of Objects Using Techniques Such as Laser Scanning, Structured Light and Photogrammetry for Cultural Heritage Applications

    Full text link
    In this paper we present a semi-automatic 2D-3D local registration pipeline capable of coloring 3D models obtained from 3D scanners by using uncalibrated images. The proposed pipeline exploits the Structure from Motion (SfM) technique in order to reconstruct a sparse representation of the 3D object and obtain the camera parameters from image feature matches. We then coarsely register the reconstructed 3D model to the scanned one through the Scale Iterative Closest Point (SICP) algorithm. SICP provides the global scale, rotation and translation parameters, using minimal manual user intervention. In the final processing stage, a local registration refinement algorithm optimizes the color projection of the aligned photos on the 3D object removing the blurring/ghosting artefacts introduced due to small inaccuracies during the registration. The proposed pipeline is capable of handling real world cases with a range of characteristics from objects with low level geometric features to complex ones

    Quantification of 37Ar emanation fractions from irradiated natural rock samples and field applications.

    Get PDF
    Underground-produced 37Ar can be used for underground nuclear explosions (UNE) detection and for groundwater dating. The quantification of the emanation, that is the fraction of activity produced in the rock that escapes to the pore space, is essential for predicting the background activity expected in natural environments. We propose an experiment in which artificial CaCO3 powder and natural rock particles are irradiated with neutrons in a routinely operated medical cyclotron, whose energy spectrum is experimentally measured. The produced activity was quantified and compared with the emanated activity to determine the emanating fraction. The results showed consistent and reproducible patterns with a dominance of the recoil process at small scales (<2 mm). We observed emanation values ≤1% with a dependency on the grain size and the inner geometry of particles. Soil weathering and the presence of water increased the recoil emanation. The atoms produced that were instantaneously recoiled in the intra- or inter-granular pore space left macroscopic samples by diffusion on timescales of days to weeks (Deff = 10-12 - 10-16 m2 s-1). This diffusive transport determines the activity that prevails in the fluid-filled pore space accessible for groundwater or soil gas sampling

    Long-lived photoexcited states in polydiacetylenes with different molecular and supramolecular organization

    Get PDF
    With the aim of determining the importance of the molecular and supramolecular organization on the excited states of polydiacetylenes, we have studied the photoinduced absorption spectra of the red form of poly[1,6-bis(3,6-didodecyl-N-carbazolyl)-2,4-hexadiyne] (polyDCHD-S) and the results compared with those of the blue form of the same polymer. An interpretation of the data is given in terms of both the conjugation length and the interbackbone separation also in relation to the photoinduced absorption spectra of both blue and red forms of poly[1,6-bis(N-carbazolyl)-2,4-hexadiyne] (polyDCHD), which does not carry the alkyl substituents on the carbazolyl side groups. Information on the above properties is derived from the analysis of the absorption and Raman spectra of this class of polydiacetylenes

    Optimization of 68Ga production at an 18 MeV medical cyclotron with solid targets by means of cross-section measurement of  66Ga, 67Ga and 68Ga.

    Get PDF
    The future development of personalized nuclear medicine relies on the availability of novel medical radionuclides. In particular, radiometals are attracting considerable interest since they can be used to label both proteins and peptides. Among them, the β+-emitter 68Ga is widely used in nuclear medicine for positron emission tomography (PET). It is used in theranostics as the diagnostic partner of the therapeutic β--emitters 177Lu and 90Y for the treatment of a wide range of diseases, including prostate cancer. Currently, 68Ga is usually obtained via 68Ge/68Ga generators. However, their availability, high price and limited produced radioactivity per elution are a major barrier for a wider use of the 68Ga-based diagnostic radiotracers. A promising solution is the production of 68Ga by means of proton irradiation of enriched 68Zn liquid or solid targets. Along this line, a research program is ongoing at the Bern medical cyclotron, equipped with a solid target station. In this paper, we report on the measurements of 68Ga, 67Ga and 66Ga production cross-sections using natural Zn and enriched 68Zn material, which served as the basis to perform optimized 68Ga production tests with enriched 68Zn solid targets

    Therapeutic Implications of Tumor Microenvironment in Lung Cancer: Focus on Immune Checkpoint Blockade

    Get PDF
    In the last decade, the treatment of non-small cell lung cancer (NSCLC) has been revolutionized by the introduction of immune checkpoint inhibitors (ICI) directed against programmed death protein 1 (PD-1) and its ligand (PD-L1), or cytotoxic T lymphocyte antigen 4 (CTLA-4). In spite of these improvements, some patients do not achieve any benefit from ICI, and inevitably develop resistance to therapy over time. Tumor microenvironment (TME) might influence response to immunotherapy due to its prominent role in the multiple interactions between neoplastic cells and the immune system. Studies investigating lung cancer from the perspective of TME pointed out a complex scenario where tumor angiogenesis, soluble factors, immune suppressive/regulatory elements and cells composing TME itself participate to tumor growth. In this review, we point out the current state of knowledge involving the relationship between tumor cells and the components of TME in NSCLC as well as their interactions with immunotherapy providing an update on novel predictors of benefit from currently employed ICI or new therapeutic targets of investigational agents. In first place, increasing evidence suggests that TME might represent a promising biomarker of sensitivity to ICI, based on the presence of immune-modulating cells, such as Treg, myeloid derived suppressor cells, and tumor associated macrophages, which are known to induce an immunosuppressive environment, poorly responsive to ICI. Consequently, multiple clinical studies have been designed to influence TME towards a pro-immunogenic state and subsequently improve the activity of ICI. Currently, the mostly employed approach relies on the association of \u201cclassic\u201d ICI targeting PD-1/PD-L1 and novel agents directed on molecules, such as LAG-3 and TIM-3. To date, some trials have already shown promising results, while a multitude of prospective studies are ongoing, and their results might significantly influence the future approach to cancer immunotherapy
    corecore