1,195 research outputs found

    miMic: The microphone as a pencil

    Get PDF
    miMic, a sonic analogue of paper and pencil is proposed: An augmented microphone for vocal and gestural sonic sketching. Vocalizations are classified and interpreted as instances of sound models, which the user can play with by vocal and gestural control. The physical device is based on a modified microphone, with embedded inertial sensors and buttons. Sound models can be selected by vocal imitations that are automatically classified, and each model is mapped to vocal and gestural features for real-time control. With miMic, the sound designer can explore a vast sonic space and quickly produce expressive sonic sketches, which may be turned into sound prototypes by further adjustment of model parameters

    Sketching sonic interactions by imitation-driven sound synthesis

    Get PDF
    Sketching is at the core of every design activity. In visual design, pencil and paper are the preferred tools to produce sketches for their simplicity and immediacy. Analogue tools for sonic sketching do not exist yet, although voice and gesture are embodied abilities commonly exploited to communicate sound concepts. The EU project SkAT-VG aims to support vocal sketching with computeraided technologies that can be easily accessed, understood and controlled through vocal and gestural imitations. This imitation-driven sound synthesis approach is meant to overcome the ephemerality and timbral limitations of human voice and gesture, allowing to produce more refined sonic sketches and to think about sound in a more designerly way. This paper presents two main outcomes of the project: The Sound Design Toolkit, a palette of basic sound synthesis models grounded on ecological perception and physical description of sound-producing phenomena, and SkAT-Studio, a visual framework based on sound design workflows organized in stages of input, analysis, mapping, synthesis, and output. The integration of these two software packages provides an environment in which sound designers can go from concepts, through exploration and mocking-up, to prototyping in sonic interaction design, taking advantage of all the possibilities of- fered by vocal and gestural imitations in every step of the process

    Adaptive models and heavy tails

    Get PDF
    This paper proposes a novel and flexible framework to estimate autoregressive models with time-varying parameters. Our setup nests various adaptive algorithms that are commonly used in the macroeconometric literature, such as learning-expectations and forgetting-factor algorithms. These are generalized along several directions: specifically, we allow for both Student-t distributed innovations as well as time-varying volatility. Meaningful restrictions are imposed to the model parameters, so as to attain local stationarity and bounded mean values. The model is applied to the analysis of inflation dynamics. Allowing for heavy-tails leads to a significant improvement in terms of fit and forecast. Moreover, it proves to be crucial in order to obtain well-calibrated density forecasts

    Cooperative sound design: a protocol analysis

    Get PDF
    Formal protocol analysis and linkographic representations are well-established approaches in design cognition studies, in the visual domain. We introduce the method and tools in the auditory domain, by analysing a case of collaborative sound design. We show how they can provide relevant qualitative and quantitative information about the efficiency of the creative process

    Derivatization Does Not Influence Antimicrobial and Antifungal Activities of Applanoxidic Acids and Sterols from Ganoderma spp.

    Get PDF
    Abstract Applanoxidic acids and sterols, isolated from Ganoderma spp., were acetylated and/or methylated. The antibacterial activity against Escherichia coli and Staphylococcus aureus and the antifungal activity against Candida albicans and Trichophyton mentagrophytes of the derivatives were investigated by a microdilution method, and compared with those of the natural products. Both natural and modified compounds exhibited comparable antibacterial and antifungal activities in a range of 1.0 to > 2.0 mg/ml minimal inhibitory concentratio

    The Sound Design Toolkit

    Get PDF
    The Sound Design Toolkit is a collection of physically informed sound synthesis models, specifically designed for practice and research in Sonic Interaction Design. The collection is based on a hierarchical, perceptually founded taxonomy of everyday sound events, and implemented by procedural audio algorithms which emphasize the role of sound as a process rather than a product. The models are intuitive to control \u2013 and the resulting sounds easy to predict \u2013 as they rely on basic everyday listening experience. Physical descriptions of sound events are intentionally simplified to emphasize the most perceptually relevant timbral features, and to reduce computational requirements as well

    Multisensory texture exploration at the tip of the pen

    Get PDF
    A tool for the multisensory stylus-based exploration of virtual textures was used to investigate how different feedback modalities (static or dynamically deformed images, vibration, sound) affect exploratory gestures. To this end, we ran an experiment where participants had to steer a path with the stylus through a curved corridor on the surface of a graphic tablet/display, and we measured steering time, dispersion of trajectories, and applied force. Despite the variety of subjective impressions elicited by the different feedback conditions, we found that only nonvisual feedback induced significant variations in trajectories and an increase in movement time. In a post-experiment, using a paper-and-wood physical realization of the same texture, we recorded a variety of gestural behaviors markedly different from those found with the virtual texture. With the physical setup, movement time was shorter and texture-dependent lateral accelerations could be observed. This work highlights the limits of multisensory pseudo-haptic techniques in the exploration of surface textures

    Catching what we can't see: manual interception of occluded fly-ball trajectories

    Get PDF
    Control of interceptive actions may involve fine interplay between feedback-based and predictive mechanisms. These processes rely heavily on target motion information available when the target is visible. However, short-term visual memory signals as well as implicit knowledge about the environment may also contribute to elaborate a predictive representation of the target trajectory, especially when visual feedback is partially unavailable because other objects occlude the visual target. To determine how different processes and information sources are integrated in the control of the interceptive action, we manipulated a computer-generated visual environment representing a baseball game. Twenty-four subjects intercepted fly-ball trajectories by moving a mouse cursor and by indicating the interception with a button press. In two separate sessions, fly-ball trajectories were either fully visible or occluded for 750, 1000 or 1250 ms before ball landing. Natural ball motion was perturbed during the descending trajectory with effects of either weightlessness (0 g) or increased gravity (2 g) at times such that, for occluded trajectories, 500 ms of perturbed motion were visible before ball disappearance. To examine the contribution of previous visual experience with the perturbed trajectories to the interception of invisible targets, the order of visible and occluded sessions was permuted among subjects. Under these experimental conditions, we showed that, with fully visible targets, subjects combined servo-control and predictive strategies. Instead, when intercepting occluded targets, subjects relied mostly on predictive mechanisms based, however, on different type of information depending on previous visual experience. In fact, subjects without prior experience of the perturbed trajectories showed interceptive errors consistent with predictive estimates of the ball trajectory based on a-priori knowledge of gravity. Conversely, the interceptive responses of subjects previously exposed to fully visible trajectories were compatible with the fact that implicit knowledge of the perturbed motion was also taken into account for the extrapolation of occluded trajectories
    • …
    corecore