2 research outputs found

    A combined microbial and biogeochemical dataset from high-latitude ecosystems with respect to methane cycle.

    Get PDF
    High latitudes are experiencing intense ecosystem changes with climate warming. The underlying methane (CH4) cycling dynamics remain unresolved, despite its crucial climatic feedback. Atmospheric CH4 emissions are heterogeneous, resulting from local geochemical drivers, global climatic factors, and microbial production/consumption balance. Holistic studies are mandatory to capture CH4 cycling complexity. Here, we report a large set of integrated microbial and biogeochemical data from 387 samples, using a concerted sampling strategy and experimental protocols. The study followed international standards to ensure inter-comparisons of data amongst three high-latitude regions: Alaska, Siberia, and Patagonia. The dataset encompasses diferent representative environmental features (e.g. lake, wetland, tundra, forest soil) of these high-latitude sites and their respective heterogeneity (e.g. characteristic microtopographic patterns). The data included physicochemical parameters, greenhouse gas concentrations and emissions, organic matter characterization, trace elements and nutrients, isotopes, microbial quantifcation and composition. This dataset addresses the need for a robust physicochemical framework to conduct and contextualize future research on the interactions between climate change, biogeochemical cycles and microbial communities at highlatitudes

    Bioremediation Potential Of Microorganisms Derived From Petroleum Reservoirs

    No full text
    Bacterial strains and metagenomic clones, both obtained from petroleum reservoirs, were evaluated for petroleum degradation abilities either individually or in pools using seawater microcosms for 21. days. Gas Chromatography-Flame Ionization Detector (GC-FID) and Gas Chromatography-Mass Spectrometry (GC-MS) analyses were carried out to evaluate crude oil degradation. The results showed that metagenomic clones 1A and 2B were able to biodegrade n-alkanes (C14 to C33) and isoprenoids (phytane and pristane), with rates ranging from 31% to 47%, respectively. The bacteria Dietzia maris CBMAI 705 and Micrococcus sp. CBMAI 636 showed higher rates reaching 99% after 21. days. The metagenomic clone pool biodegraded these compounds at rates ranging from 11% to 45%. Regarding aromatic compound biodegradation, metagenomic clones 2B and 10A were able to biodegrade up to 94% of phenanthrene and methylphenanthrenes (3-MP, 2-MP, 9-MP and 1-MP) with rates ranging from 55% to 70% after 21. days, while the bacteria Dietzia maris CBMAI 705 and Micrococcus sp. CBMAI 636 were able to biodegrade 63% and up to 99% of phenanthrene, respectively, and methylphenanthrenes (3-MP, 2-MP, 9-MP and 1-MP) with rates ranging from 23% to 99% after 21. days. In this work, isolated strains as well as metagenomic clones were capable of degrading several petroleum compounds, revealing an innovative strategy and a great potential for further biotechnological and bioremediation applications.8901/02/15191200Asif, M., Grice, K., Fazeelat, T., Assessment of petroleum biodegradation using stable hydrogen isotopes of individual saturated hydrocarbon and polycyclic aromatic hydrocarbon distributions in oils from the Upper Indus Basin, Pakistan (2009) Org. Geochem., 40, pp. 301-311Bamforth, S.M., Singleton, I., Review: Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions (2005) J. Chem. Technol. Biotechnol., 80, pp. 723-736Banat, I.M., Franzetti, A., Gandolfi, I., Bestetti, G., Martinotti, M.G., Fracchia, L., Smyth, T.J., Marchant, R., MINI-REVIEW: Microbial biosurfactants production, applications and future potential (2010) Appl. Microbiol. Biotechnol., 87, pp. 427-444Bao, M., Sun, P., Yang, X., Wang, X., Wang, L., Cao, L., Li, F., (2014) Biodegradation of Marine Surface Floating Crude Oil in a Large-scale Field Simulated Experiment, , http://dx.doi.org/10.1039/c4em00166d, Processes & Impacts: Environmental ScienceBellicanta, G.S., Diversity of catabolic genes in sediment samples of Santos and São Vicente estuarine systems (2005), 5 (2). , SP. Biota Neotrop. [online]Bihari, Z., Szvetnik, A., Szabo, Z., Blastyak, A., Zombori, Z., Balázs, M., Kiss, I., Functional analysis of long-chain n-alkane degradation by Dietzia spp (2011) FEMS Microbiol. Lett., 316, pp. 100-107Biver, S., Vandenbol, M., Characterization of three new carboxylic ester hydrolases isolated by functional screening of a forest soil metagenomic library (2013) J. Ind. Microbiol. Biotechnol., 40, pp. 191-200Bødtker, G., Hvidsten, I.V., Barth, T., Torsvik, T., Hydrocarbon degradation by Dietzia sp. A14101 isolated from an oil reservoir model column (2009) Antonie Van Leeuwenhoek, 96, pp. 459-469Borzenkov, I.A., Milekhina, E.I., Gotoeva, M.T., Rozanova, E.P., Beliaev, S.S., (2006) Mikrobiologia, 75, p. 82Calvo, C., Manzanera, M., Silva-Castro, G.A., Uad, I., González-López, J., Application of bioemulsifiers in soil oil bioremediation processes. Future prospects (2009) Sci. Total Environ., 407, pp. 3634-3640Cameron, P., Liability for Catastrophic Risk in the oil gas Industry (2012), (6). , International Energy Law ReviewCappello, S., Caruso, G., Zampino, D., Monticelli, L.S., Maimone, G., Denaro, R., Tripodo, B., Giuliano, L., Microbial community dynamics during assays of harbour oil spill bioremediation: a microscale simulation study (2007) J. Appl. Microbiol., 102 (1), pp. 184-194Carrera-Martínez, D., Mateos-Sanz, A., López-Rodas, V., Costas, E., Microalgae response to petroleum spill: an experimental model analysing physiological and genetic response of Dunaliella tertiolecta (Chlorophyceae) to oil samples from the tanker Prestige (2010) Aquat. Toxicol., 97, pp. 151-159Cerqueira, V.S., Hollenbach, E.B., Maboni, F., Vainstein, M.H., Camargo, F.A.O., Peralba, M.C.R., Bento, F.M., Biodegradation potential of oily sludge by pure and mixed bacterial cultures (2011) Bioresour. Technol., 102 (23), pp. 11003-11010Da Cruz, G.F., Santos Neto, E.V., Marsaioli, A.J., Petroleum degradation by aerobic microbiota from the Pampo Sul Oil Field, Campos Basin, Brazil (2008) Org. Geochem., 39, pp. 1204-1209Da Cruz, G.F., Angolini, C.F.F., Oliveira, L.G., Lopes, P.F., Vasconcellos, S.P., Elaine Crespim, E., Oliveira, V.M., Marsaioli, A.J., Searching for monooxygenases and hydrolases in bacteria from an extreme environment (2010) Appl. Microbiol. Biotechnol., 87, pp. 319-329DaCruz, G.F., Vasconcellos, S.P., Angolini, C.F.F., Dellagnezze, B.M., Sierra Garcia, I.N., Oliveira, V.M., Santos Neto, E.V., Marsaioli, A.J., Could petroleum biodegradation be a joint achievement of aerobic and anaerobic microrganisms in deep sea reservoirs (2011) AMB Express, 1. , 47le 124Dellagnezze, B.M., Vasconcellos, S.P., Oliveira, V.M., Bioprospection of genes involved in the synthesis of biosurfactants from petroleum reservoir microbial communities (2010), Master Science thesis, UNICAMPDick, G.J., Anantharaman, K., Baker, B.J., Li, M., Daniel, C., Reed, D.C., Sheik, C.S., The microbiology of deep sea hydrothermal vent plumes: ecological and biogeographic linkages to seafloor and water column habitats (2013) Frontiers Microbiol., 4Duarte, H.O., Droguett, E.L., Araújo, M., Teixeira, S.F., Quantitative Ecological Risk Assessment of Industrial Accidents: The Case of Oil Ship Transportation in the Coastal Tropical Area of Northeastern Brazil (2013) Human Ecol. Risk Assess., 19, pp. 1457-1476Durako, M.J., Kenworthy, W.J., Fatemy, S.M.R., Valavi, H., Thayer, G.W., Assessment of the toxicity of Kuwait crude oil on the photosynthesis and respiration of seagrasses of the northern Gulf (1993) Mar. Pollut. Bull., 27, pp. 223-227Evans, F.F., Rosado, A.S., Sebastian, G.V., Casella, R., Machado, P.L.O.A., Holmstrom, C., Kjelleberg, S., Seldin, L., Impact of oil contamination and biostimulation on the diversity of indigenous bacterial communities in soil microcosms (2004) FEMS Microbiol. Ecol., 49, pp. 295-305Faoro, H., Glogauer, A., Souza, E.M., Rigo, L.U., Cruz, L.M., Monteiro, R.A., Pedrosa, F.A., Identification of a new lipase family in the Brazilian Atlantic Forest soil metagenome (2011) Environ. Microbiol. Reports, 3 (6), pp. 750-755Gharibzahedi, S.M.T., Razavi, S.H., Mousavi, M., Potential applications and emerging trends of species of the genus Dietzia: a review (2013) Ann. Microbiol.Gonzalez, J., Figueiras, F.G., Aranguren-Gassis, M., Crespo, B.G., Fernandez, E., Morán, X.A.G., Nieto-Cid, M., Effect of a simulated oil spill on natural assemblages of marine phytoplankton enclosed in microcosms (2009) Estuar. Coast. Shelf Sci., 83, pp. 265-276Hassanshahian, M., Ahmadinejad, M., Tebyanian, H., Kariminik, A., Isolation and characterization of alkane degrading bacteria from petroleum reservoir waste water in Iran (Kerman and Tehran provenances) (2013) Mar. Pollut. Bull., 73, pp. 300-305Jegan, J., Vijayaraghavan, K., Senthilkumar, R., Velan, M., Naphthalene Degradation Kinetics of Micrococcus sp., isolated from activated sludge (2010) CLEAN Soil, Air, Water, 38 (9), pp. 837-842Kuhn, E., Bellicanta, G.S., Pellizari, V.H., New alk genes detected in Antarctic marine sediments (2009) Environ. Microbiol., 11 (3), pp. 669-673Luqueño, F., Encinas, V.C., Marsch, R., Martínez-Suárez, C., Vázquez-Núñez, E., Dendooven, L., Microbial communities to mitigate contamination of PAHs in soil-possibilities and challenges: a review (2011) Environ. Sci. Pollut. Res., 18, pp. 12-30Magot, M., Ollivier, B., Patel, B.K.C., Microbiology of petroleum reservoirs (2000) Antonie Leeuwenhoek, 77, p. 103Malik, Z., Ahmed, S., Degradation of petroleum hydrocarbons by oil field isolated bacterial consortium (2012) Afr. J. Biotechnol., 11, p. n3Mei, H., YIN, Y., Studies on marine oil spills and their ecological damage (2009) J. Ocean Univ., 8, pp. 312-316. , (China Oceanic and Coastal Sea Research)Mohammed, D., Ramsubhag, A., Beckles, D.M., An Assessment of the biodegradation of petroleum hydrocarbons in contaminated soil using non-indigenous, commercial microbes (2007) Water Air Soil Pollut, 182, pp. 349-356Mrozik, A., Piotrowska-Seget, Z., Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds (2010) Microbiol. Res., 165, pp. 363-375Mulabagal, V., Yin, F., John, G.F., Hayworth, J.S., Clement, T.P., Chemical fingerprinting of petroleum biomarkers in Deepwater Horizon oil spill samples collected from Alabama shoreline (2013) Mar. Pollut. Bull., 70, pp. 147-154Neveu, J., Regeard, C., DuBow, M.S., Isolation and characterization of two serine proteases from metagenomic libraries of the Gobi and Death Valley deserts (2011) Appl. Microbiol. Biotechnol., 91, pp. 635-644Osterhage, C., Schwibbe, M., König, G.M., Wright, A.D., Differences between Marine and Terrestrial Phoma species as determined by HPLC-DAD and HPLC-MS (2000) Phytochem. Anal., 11, pp. 1-7Pacheco, G.J., Ciapina, E.M.P., Gomes, E.B., Pereira Junior, N., Biosurfactant production by Rhodococcus Erythropolis and its application to oil removal (2010) Brazilian J. Microbiol., 41, pp. 685-693Palme, O., Moszyk, A., Iphöfer, D., Lang, S., Selected Microbial Glycolipids: Production, Modification and Characterization (2010) Biosurfactants, Landes Bioscience and Springer Science Business Media, , Ramkrishna Sen. (Ed.), Cap 14Peralta-Martínez, M.V., Palacios-Lozano, E.M., Blass-Amador, G., The effect of SARA fractions on viscosity for five mexican vacuum residues (2011) Energy Sources, Part A: Recovery, Utilization, Environ. Effects, 33 (10), pp. 920-924Perelo, L.W., Review: in situ and bioremediation of organic pollutants in aquatic sediments (2010) J. Hazard. Mater., 177, pp. 81-89Peters, K.E., Moldowan, J.M., (1993) The Biomarker Guide. Interpreting Molecular Fossils in Petroleum and Ancient Sediments, , Prentice-Hall+, Englewood Cliffs, NJPeters, K.E., Walters, C.C., Moldowan, J.M., The Biomarker Guide. Biomarkers and Isotopes in Petroleum Systems and Earth History (2005), 1-2, p. 1155. , Cambridge University Press, USA, 2005Phale, P.S., Basu, A., Majhi, P.D., Deveryshetty, J., Vamsee-Krishna, C., Shrivastava, R., Metabolic diversity in bacterial degradation of aromatic compounds (2007) OMICS J. Integrative Biol., 11 (3)Quaiser, A., Zivanovic, Y., Moreira, D., Lopez-Garcia, P., Comparative metagenomics of bathypelagic plankton and bottom sediment from the Sea of Marmara (2011) ISME J., 5, pp. 285-304Ramsay, M.A., Swannell, R.P.J., Shipton, W.A., Duke, N., Hill, R.T., Effect of bioremediation on t e microbial community in oiled mangrove sediments (2000) Mar. Pollut. Bull., 41 (7-12), pp. 413-419Ripp, S., Nivens, D.E., Ahn, Y., Werner, C., Jarrel, J., Easter, J.P., Cox, C.D., Sayler, G.S., Controlled field release of a bioluminescent genetically engineered microorganism for bioremediation process monitoring and control (2000) Environ. SciTechnol., 34, pp. 846-853Sayler, G.S., Ripp, S., Field applications of genetically engineered microorganisms for bioremediation processes (2000) Curr. Opin. Biotechnol., 11 (3), pp. 286-289Sayler, G.S., Cox, C.D., Burlage, R., Ripp, S., Nivens, D.E., Werner, C., Ahn, Y., Matrubutham, U., Field application of a genetically engineered microorganism for polycyclic aromatic hydrocarbon bioremediation process monitoring and control (1999) Novel Approach Biorem. Org. Pollut., pp. 241-254Sierra-Garcia, I.N., Alvarez, J.C., Vasconcellos, S.P., Souza, A.P., Santos Neto, E.V., Oliveira, V.M., New hydrocarbon degradation pathways in the microbial metagenome from brazilian petroleum reservoirs (2014) Plos One, 9 (2)Silva, A.C., Fernando, J.S., de Oliveira, S., de Oliveira, F.J.S., Bernardes, D.S., França, F.P., Bioremediation of marine sediments impacted by petroleum (2009) Appl. Biochem. Biotechnol., 153, pp. 58-66Silva, T.R., Verde, L.C.L., Santos Neto, E.V., Oliveira, V.M., Diversity analyses of microbial communities in petroleum samples from Brazilian oil fields (2013) Int. Biodeterior. Biodegrad., 81, pp. 57-70Silva-Castro, G.A., Uad, I., Gonzalez-Lopez, J., Fandin, C.G., Toledo, F.L., Calvo, C., Application of selected microbial consortia combined with inorganic and oleophilic fertilizers to recuperate oil-polluted soil using land farming technology (2012) Clean Technol. Environ. Policy, 14, pp. 719-726Tambekar, D.H., Gadakh, P.V., Isolation and characterization of biosurfactant-producing bacteria isolated from petroleum contaminated soil (2012) Int. J. Adv. Pharm. Biol. Sci., 2 (2), pp. 135-140Tissot, P., Welte, D., (1984) Petroleum formation and occurrence, p. 699. , Springer Verlag, BerlinTuleva, B., Christova, N., Cohen, R., Antonova, D., Todorov, T., Stoineva, I., Isolation and characterization of trehalose tetraester biosurfactants from a soil strain Micrococcus luteus BN56 (2009) Process. Biochem., 44, pp. 135-141Tyagi, M., Fonseca, M.M.R., de Carvalho, C.C.C.R., Review Paper: Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes (2010) Biodegradationvan Hamme, J.D., Singh, A., Ward, O.P., Recent advances in petroleum microbiology (2003) Microbiol. Mol. Biol. Rev., 67, p. 503Vasconcellos, S.P., Crespim, E., Cruz, G.F., Senatore, D.B., Simioni, K.C.M., Santos Neto, E.V., Marsaioli, A.J., Oliveira, V.M., Isolation, biodegradation ability and molecular detection of hydrocarbon degrading bacteria in petroleum samples from a Brazilian offshore basin (2009) Org. Geochem., 40, pp. 574-588Vasconcellos, S.P., Angolini, C.F.F., Garcia, I.N.S., Dellagnezze, B.M., Silva, C.C., Marsaioli, A.J., Neto, E.V.S., Oliveira, V.M., Screening for hydrocarbon biodegraders in a metagenomic clone library derived from Brazilian petroleum reservoirs (2010) Org. Geochem., 41, pp. 675-681Vasconcellos, S.P., Dellagnezze, B.M., Wieland, A., Klock, J.H., Santos Neto, E.V., Marsaioli, A.J., Oliveira, V.M., Michaelis, W., The potential for hydrocarbon biodegradation and production of extracellular polymeric substances by aerobic bacteria isolated from a Brazilian petroleum reservoir (2011) World J. Microbiol. Biotechnol., 27 (6), pp. 1513-1518Venosa, A.D., Suidan, M.T., King, D., Wrenn, B.A., Use of hopane as a conservative biomarker for monitoring the bioremediation effectiveness of crude oil contaminating a sandy beach (1997) J. Ind. Microbiol. Biotechnol., 18, pp. 131-139Verde, L.C.L., Silva, T.R., Dellagnezze, B.M., Santos Neto, E.V., Oliveira, V.M., Diversity of hydrocarbon-related catabolic genes in oil samples from Potiguar Basin (RN, Brazil) (2013) J. Pet. Environ. Biotechnol., 4, p. 138von der Weid, I., Marques, J.M., Cunha, C.D., Lippi, R.K., Santos, S.C.C., Rosado, A.S., Lins, U., Seldin, L., Identification and biodegradation potential of a novel strain of Dietzia cinnamea isolated from a petroleum-contaminated tropical soil (2007) Syst. Appl. Microbiol., 30 (4), pp. 331-339Wang, Z., Fingas, M., Developments in the analysis of petroleum hydrocarbons in oils, petroleum products and oil-spill-related environmental samples by gas chromatography (1997) J. Chromatogr. A, 774, p. 51Wang, Z., Yang, C., AL, E., Petroleum biomarker for oil spill characterization and source identification (2007) Oil Spill Environmental Forensics, , Academic Press, Oxford, Z. Wang, S. Stout (Eds.)Wang, X.B., Chi, C.Q., Nie, Y., Tang, Y.Q., Tan, Y., Wu, G., Wu, X.L., Degradation of petroleum hydrocarbons (C6-C40) and crude oil by a novel Dietzia strain (2011) Bioresour. Technol., 102, pp. 7755-7761Wang, X.B., Nie, Y., Tang, Y.Q., Wu, G., Wu, X.L., N-Alkane Chain Length Alters Dietzia sp. Strain DQ12-45-1b Biosurfactant Production and Cell Surface Activity (2013) Appl. Environ. Microbiol., 79 (1), pp. 400-402Wenger, L.M., Isaksen, G.H., Control of hydrocarbon seepage intensity on level of biodegradation in sea bottom sediments (2002) Org. Geochem., 33 (12), pp. 1277-1292Winters, J.C., Williams, J.A., Microbial alteration of crude oil in the reservoir (1969), pp. E22-E31. , Symp. Petroleum Transformations in Geologic Environments. Am. Chem. Soc. Meet., New YorkZhu, X., Venosa, A.D., Suidan, M.T., Literature Review On The Use Of Commercial Bioremediation Agents For Cleanup Of Oil-Contaminated Estuarine Environments (2004), Epa/600/R-04/07
    corecore