6,092 research outputs found

    A polarisation modulation scheme for measuring vacuum magnetic birefringence with static fields

    Get PDF
    A novel polarisation modulation scheme for polarimeters based on Fabry-Perot cavities is presented. The application to the proposed HERA-X experiment aiming to measuring the magnetic birefringence of vacuum with the HERA superconducting magnets is discussed

    Scattering of accelerated wave packets

    Get PDF
    Wave-packet scattering from a stationary potential is significantly modified when the wave-packet is subject to an external time-dependent force during the interaction. In the semiclassical limit, wave--packet motion is simply described by Newtonian equations and the external force can, for example, cancel the potential force making a potential barrier transparent. Here we consider wave-packet scattering from reflectionless potentials, where in general the potential becomes reflective when probed by an accelerated wave-packet. In the particular case of the recently-introduced class of complex Kramers-Kronig potentials we show that a broad class of time dependent forces can be applied without inducing any scattering, while there is a breakdown of the reflectionless property when there is a broadband distribution of initial particle momentum, involving both positive and negative components.Comment: 13 pages, 4 figures, to appear in Phys. Rev.

    Observation of surface states with algebraic localization

    Full text link
    We introduce and experimentally demonstrate a class of surface bound states with algebraic decay in a one-dimensional tight-binding lattice. Such states have an energy embedded in the spectrum of scattered states and are structurally stable against perturbations of lattice parameters. Experimental demonstration of surface states with algebraic localization is presented in an array of evanescently-coupled optical waveguides with tailored coupling rates.Comment: revised version with Supplemental Material, to appear in Phys. Rev. Let

    Ultrafast hot electron dynamics in plasmonic nanostructures: Experiments, modelling, design

    Get PDF
    Metallic nanostructures exhibit localized surface plasmons (LSPs), which offer unprecedented opportunities for advanced photonic materials and devices. Following resonant photoexcitation, LSPs quickly dephase, giving rise to a distribution of energetic ‘hot’ electrons in the metal. These out-of-equilibrium carriers undergo ultrafast internal relaxation processes, nowadays pivotal in a variety of applications, from photodetection and sensing to the driving of photochemical reactions and ultrafast all-optical modulation of light. Despite the intense research activity, exploitation of hot carriers for real-world nanophotonic devices remains extremely challenging. This is due to the com- plexity inherent to hot carrier relaxation phenomena at the nanoscale, involving short-lived out-of-equilibrium electronic states over a very broad range of energies, in interaction with thermal electronic and phononic baths. These issues call for a comprehensive understanding of ultrafast hot electron dynamics in plasmonic nanostructures. This paper aims to review our contribution to the field: starting from the fundamental physics of plasmonic nanostructures, we first describe the experimental techniques used to probe hot electrons; we then introduce a numerical model of ultrafast nanoscale relaxation processes, and present examples in which experiments and modelling are combined, with the aim of designing novel optical functionalities enabled by ultrafast hot-electron dynamics

    The PVLAS experiment: measuring vacuum magnetic birefringence and dichroism with a birefringent Fabry-Perot cavity

    Get PDF
    Vacuum magnetic birefringence was predicted long time ago and is still lacking a direct experimental confirmation. Several experimental efforts are striving to reach this goal, and the sequence of results promises a success in the next few years. This measurement generally is accompanied by the search for hypothetical light particles that couple to two photons. The PVLAS experiment employs a sensitive polarimeter based on a high finesse Fabry-Perot cavity. In this paper we report on the latest experimental results of this experiment. The data are analysed taking into account the intrinsic birefringence of the dielectric mirrors of the cavity. Besides the limit on the vacuum magnetic birefringence, the measurements also allow the model-independent exclusion of new regions in the parameter space of axion-like and milli-charged particles. In particular, these last limits hold also for all types of neutrinos, resulting in a laboratory limit on their charge

    The local stellar population of nova regions in the Large Magellanic Cloud

    Get PDF
    This study aims at identifying and understanding the parent population of novae in the Large Magellanic Cloud (LMC) by studying the local, projected, stellar population. The star formation history of the local environment around novae is studied based on photometric data of stars and star clusters in the nova neighbourhood, available in the OGLE II survey and star cluster catalogues. The ages of stellar population within a few arcmin around novae regions are estimated using isochrone fits to the V vs (V-I) colour-magnitude diagrams. The fraction of stars in various evolutionary states are compared using luminosity functions of the main-sequence stars and the red giant stars. The age, density and luminosity function of the stellar population are estimated around 15 novae. The upper limit of the age of the intermediate stellar population is found to be 4 Gyr in all the regions, excepting the region around the slow nova LMC 1948. Star formation in these regions is found to have started between 4 - 2.0 Gyr, with a majority of the regions starting the star formation at 3.2 Gyr. This star formation event lasted until 1.6 - 0.8 Gyr The star formation history of the underlying population of both the fast and moderately fast novae indicate their parent population to be similar and likely to be in the age range 3.2 - 1.0 Gyr. This is in good agreement with the theoretical age estimates for Galactic cataclysmic variables. The region around the slow nova shows a stellar population in the age range 1 - 10 Gyr, with a good fraction belonging to an older population, consistent with the idea that the progenitors of slow novae belong to older population.Comment: to appear in A&A (final version - error analysis included, typos corrected, figures 17 and 18 changed

    First results from the new PVLAS apparatus: a new limit on vacuum magnetic birefringence

    Full text link
    Several groups are carrying out experiments to observe and measure vacuum magnetic birefringence, predicted by Quantum Electrodynamics (QED). We have started running the new PVLAS apparatus installed in Ferrara, Italy, and have measured a noise floor value for the unitary field magnetic birefringence of vacuum Δnu(vac)=(4±20)×10−23\Delta n_u^{\rm (vac)}= (4\pm 20) \times 10^{-23} T−2^{-2} (the error represents a 1σ\sigma deviation). This measurement is compatible with zero and hence represents a new limit on vacuum magnetic birefringence deriving from non linear electrodynamics. This result reduces to a factor 50 the gap to be overcome to measure for the first time the value of Δnu(vac,QED)\Delta n_u^{\rm (vac,QED)} predicted by QED: Δnu(vac,QED)=4×10−24\Delta n_u^{\rm (vac,QED)}= 4\times 10^{-24} ~T−2^{-2}. These birefringence measurements also yield improved model-independent bounds on the coupling constant of axion-like particles to two photons, for masses greater than 1 meV, along with a factor two improvement of the fractional charge limit on millicharged particles (fermions and scalars), including neutrinos

    New PVLAS model independent limit for the axion coupling to γγ\gamma\gamma for axion masses above 1meV

    Full text link
    During 2014 the PVLAS experiment has started data taking with a new apparatus installed at the INFN Section of Ferrara, Italy. The main target of the experiment is the observation of magnetic birefringence of vacuum. According to QED, the ellipticity generated by the magnetic birefringence of vacuum in the experimental apparatus is expected to be ψ(QED)≈5×10−11\psi^{\rm(QED)} \approx 5\times10^{-11}. No ellipticity signal is present so far with a noise floor ψ(noise)≈2.5×10−9\psi^{\rm(noise)} \approx 2.5\times10^{-9} after 210 hours of data taking. The resulting ellipticity limit provides the best model independent upper limit on the coupling of axions to γγ\gamma\gamma for axion masses above 10−310^{-3}eV

    Classical realization of two-site Fermi-Hubbard systems

    Full text link
    A classical wave optics realization of the two-site Hubbard model, describing the dynamics of interacting fermions in a double-well potential, is proposed based on light transport in evanescently-coupled optical waveguides.Comment: 4 page
    • …
    corecore