279 research outputs found

    Logical Rules and a Preliminary Prototype for Translating Mortality Coding Rules from ICD-10 to ICD-11

    Get PDF
    Iris is a system for coding multiple causes of death in ICD-10 and for the selection of the underlying cause of death, based on a knowledge base composed by a large number of rules. With the adoption of ICD-11, those rules need translation to ICD-11. A pre-project has been carried out to evaluate feasibility of transition to ICD-11, which included the analysis of the logical meta-rules needed for rule translation and development of a prototype support system for the expert that will translate the coding rules

    An economic analysis of email-based telemedicine: A cost minimisation study of two service models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Email-based telemedicine has been reported to be an efficient method of delivering online health services to patients at a distance and is often described as a low-cost form of telemedicine. The service may be low-cost if the healthcare organisation utilise their existing email infrastructure to provide their telemedicine service. Many healthcare organisations use commercial-off-the-shelf (COTS) email applications. COTS email applications are designed for peer-to-peer communication; hence, in situations where multiple clinicians need to be involved, COTS applications may be deficient in delivering telemedicine. Larger services often rely on different staff disciplines to run their service and telemedicine tools for supervisors, clinicians and administrative staff are not available in COTS applications. Hence, some organisations may choose to develop a purpose-written email application to support telemedicine. We have conducted a cost-minimisation analysis of two different service models for establishing and operating an email service. The first service model used a COTS email application and the second used a purpose-written telemedicine application.</p> <p>Methods</p> <p>The actual costs used in the analysis were from two organisations that originally ran their counselling service with a COTS email application and later implemented a purpose-written application. The purpose-written application automated a number of the tasks associated with running an email-based service. We calculated a threshold at which the higher initial costs for software development were offset by efficiency gains from automation. We also performed a sensitivity analysis to determine the effect of individual costs on the threshold.</p> <p>Results</p> <p>The cost of providing an email service at 1000 consultations per annum was 19,930usingaCOTSemailapplicationand19,930 using a COTS email application and 31,925 using a purpose-written application. At 10,000 consultations per annum the cost of providing the service using COTS email software was 293,341comparedto293,341 compared to 272,749 for the purpose-written application. The threshold was calculated at a workload of 5216 consultations per annum. When more than 5216 email consultations per annum are undertaken, the purpose-written application was cheaper than the COTS service model. The sensitivity analysis showed the threshold was most sensitive to changes in administrative staff salaries.</p> <p>Conclusion</p> <p>In the context of telemedicine, we have compared two different service models for email-based communication – purpose-written and COTS applications. Under the circumstances described in the paper, when workload exceeded 5216 email consultations per annum, there were savings made when a purpose-written email application was used. This analysis provides a useful economic model for organisations contemplating the use of an email-based telemedicine system.</p

    Ontology-based, Tissue MicroArray oriented, image centered tissue bank

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tissue MicroArray technique is becoming increasingly important in pathology for the validation of experimental data from transcriptomic analysis. This approach produces many images which need to be properly managed, if possible with an infrastructure able to support tissue sharing between institutes. Moreover, the available frameworks oriented to Tissue MicroArray provide good storage for clinical patient, sample treatment and block construction information, but their utility is limited by the lack of data integration with biomolecular information.</p> <p>Results</p> <p>In this work we propose a Tissue MicroArray web oriented system to support researchers in managing bio-samples and, through the use of ontologies, enables tissue sharing aimed at the design of Tissue MicroArray experiments and results evaluation. Indeed, our system provides ontological description both for pre-analysis tissue images and for post-process analysis image results, which is crucial for information exchange. Moreover, working on well-defined terms it is then possible to query web resources for literature articles to integrate both pathology and bioinformatics data.</p> <p>Conclusions</p> <p>Using this system, users associate an ontology-based description to each image uploaded into the database and also integrate results with the ontological description of biosequences identified in every tissue. Moreover, it is possible to integrate the ontological description provided by the user with a full compliant gene ontology definition, enabling statistical studies about correlation between the analyzed pathology and the most commonly related biological processes.</p

    The UA9 experimental layout

    Full text link
    The UA9 experimental equipment was installed in the CERN-SPS in March '09 with the aim of investigating crystal assisted collimation in coasting mode. Its basic layout comprises silicon bent crystals acting as primary collimators mounted inside two vacuum vessels. A movable 60 cm long block of tungsten located downstream at about 90 degrees phase advance intercepts the deflected beam. Scintillators, Gas Electron Multiplier chambers and other beam loss monitors measure nuclear loss rates induced by the interaction of the beam halo in the crystal. Roman pots are installed in the path of the deflected particles and are equipped with a Medipix detector to reconstruct the transverse distribution of the impinging beam. Finally UA9 takes advantage of an LHC-collimator prototype installed close to the Roman pot to help in setting the beam conditions and to analyze the efficiency to deflect the beam. This paper describes in details the hardware installed to study the crystal collimation during 2010.Comment: 15pages, 11 figure, submitted to JINS

    Development and preliminary evaluation of the VPS ReplaySuite: a virtual double-headed microscope for pathology

    Get PDF
    BACKGROUND: Advances in computing and telecommunications have resulted in the availability of a range of online tools for use in pathology training and quality assurance. The majority focus on either enabling pathologists to examine and diagnose cases, or providing image archives that serve as reference material. Limited emphasis has been placed on analysing the diagnostic process used by pathologists to reach a diagnosis and using this as a resource for improving diagnostic performance. METHODS: The ReplaySuite is an online pathology software tool that presents archived virtual slide examinations to pathologists in an accessible video-like format, similar to observing examinations with a double-headed microscope. Delivered through a customised web browser, it utilises PHP (Hypertext PreProcessor) to interact with a remote database and retrieve data describing virtual slide examinations, performed using the Virtual Pathology Slide (VPS). To demonstrate the technology and conduct a preliminary evaluation of pathologists opinions on its potential application in pathology training and quality assurance, 70 pathologists were invited to use the application to review their own and other pathologists examinations of 10 needle-core breast biopsies and complete an electronic survey. 9 pathologists participated, and all subsequently completed an exit survey. RESULTS: Of those who replayed an examination by another pathologist, 83.3% (5/6) agreed that replays provided an insight into the examining pathologists diagnosis and 33.3% (2/6) reconsidered their own diagnosis for at least one case. Of those who reconsidered their original diagnosis, all re-classified either concordant with group consensus or original glass slide diagnosis. 77.7% (7/9) of all participants, and all 3 participants who replayed more than 10 examinations stated the ReplaySuite to be of some or great benefit in pathology training and quality assurance. CONCLUSION: Participants conclude the ReplaySuite to be of some or of great potential benefit to pathology training and quality assurance and consider the ReplaySuite to be beneficial in evaluating the diagnostic trace of an examination. The ReplaySuite removes temporal and spatial issues that surround the use of double-headed microscopes by allowing examinations to be reviewed at different times and in different locations to the original examination. While the evaluation set was limited and potentially subject to bias, the response of participants was favourable. Further work is planned to determine whether use of the ReplaySuite can result in improved diagnostic ability

    Validation of diagnostic accuracy using digital slides in routine histopathology

    Get PDF
    Background: Robust hardware and software tools have been developed in digital microscopy during the past years for pathologists. Reports have been advocated the reliability of digital slides in routine diagnostics. We have designed a retrospective, comparative study to evaluate the scanning properties and digital slide based diagnostic accuracy. Methods: 8 pathologists reevaluated 306 randomly selected cases from our archives. The slides were scanned with a 20 × Plan-Apochromat objective, using a 3-chip Hitachi camera, resulting 0.465 μm/pixel resolution. Slide management was supported with dedicated Data Base and Viewer software tools. Pathologists used their office PCs for evaluation and reached the digital slides via intranet connection. The diagnostic coherency and uncertainty related to digital slides and scanning quality were analyzed. Results: Good to excellent image quality of slides was recorded in 96%. In half of the critical 61 digital slides, poor image quality was related to section folds or floatings. In 88.2 % of the studied cases the digital diagnoses were in full agreement with the consensus. Out of the overall 36 incoherent cases, 7 (2.3%) were graded relevant without any recorded uncertainty by the pathologist. Excluding the non-field specific cases from each pathologist’s record this ratio was 1.76 % of all cases. Conclusions: Our results revealed that: 1) digital slide based histopathological diagnoses can be highly coherent with those using optical microscopy; 2) the competency of pathologists is a factor more important than the quality of digital slide; 3) poor digital slide quality do not endanger patient safety as these errors are recognizable by the pathologist and further actions for correction could be taken. Virtual slides: The virtual slide(s) for this article can be found here
    corecore