28 research outputs found

    Soy protein ingestion results in less prolonged p70S6 kinase phosphorylation compared to whey protein after resistance exercise in older men

    Get PDF
    Background The phosphorylation of p70S6 Kinase (p70S6K) is an important step in the initiation of protein translation. p70S6K phosphorylation is enhanced with graded intakes of whey protein after resistance exercise. Soy protein ingestion results in lower muscle protein synthesis after exercise compared with whey; however, the underlying mechanisms responsible for this difference have not been reported. Findings 13 older men (60–75) completed an acute bout of lower body resistance exercise and ingested 30 g of soy protein or carbohydrate. Muscle biopsies were obtained in the rested and fasted state and 2 and 4 hours post exercise. Phosphorylation status of p70S6K was measured with western blot. Results were compared with previously reported data from the ingestion of 30 g of whey protein or placebo. p70S6K phosphorylation was increased 2, but not 4 hours post exercise with soy protein ingestion. p70S6K phosphorylation was not increased post exercise with carbohydrate ingestion. Conclusions Ingesting 30 g of either whey or soy protein resulted in equivalent p70S6K phosphorylation at 2 hours post exercise, however, unlike whey, soy protein failed to promote prolonged phosphorylation of p70S6K to 4 hours post-exercise

    Dose-dependent increases in p70S6K phosphorylation and intramuscular branched-chain amino acids in older men following resistance exercise and protein intake.

    Get PDF
    Resistance exercise and whey protein supplementation are effective strategies to activate muscle cell anabolic signaling and ultimately promote increases in muscle mass and strength. In the current study, 46 healthy older men aged 60–75 (69.0 ± 0.55 years, 85.9 ± 1.8 kg, 176.8 ± 1.0 cm) performed a single bout of unaccustomed lower body resistance exercise immediately followed by ingestion of a noncaloric placebo beverage or supplement containing 10, 20, 30, or 40 g of whey protein concentrate (WPC). Intramuscular amino acid levels in muscle biopsy samples were measured by Gas Chromatography–Mass Spectrometry (GC-MS) at baseline (before exercise and WPC supplementation) plus at 2 h and 4 h post exercise. Additionally, the extent of p70S6K phosphorylation at Thr389 in muscle biopsy homogenates was assessed by western blot. Resistance exercise alone reduced intramuscular branch chain amino acid (BCAA; leucine, isoleucine, and valine) content. Supplementation with increasing doses of whey protein prevented this fall in muscle BCAAs during postexercise recovery and larger doses (30 g and 40 g) significantly augmented postexercise muscle BCAA content above that observed following placebo ingestion. Additionally, the fold change in the phosphorylation of p70S6K (Thr389) at 2 h post exercise was correlated with the dose of whey protein consumed (r = 0.51, P < 001) and was found to be significantly correlated with intramuscular leucine content (r = 0.32, P = 0.026). Intramuscular BCAAs, and leucine in particular, appear to be important regulators of anabolic signaling in aged human muscle during postexercise recovery via reversal of exercise-induced declines in intramuscular BCAAs

    Erythropoietin Does Not Enhance Skeletal Muscle Protein Synthesis Following Exercise in Young and Older Adults

    Get PDF
    PURPOSE: Erythropoietin (EPO) is a renal cytokine that is primarily involved in hematopoiesis while also playing a role in non-hematopoietic tissues expressing the EPO-receptor (EPOR). The EPOR is present in human skeletal muscle. In mouse skeletal muscle, EPO stimulation can activate the AKT serine/threonine kinase 1 (AKT) signaling pathway, the main positive regulator of muscle protein synthesis. We hypothesized that a single intravenous EPO injection combined with acute resistance exercise would have a synergistic effect on skeletal muscle protein synthesis via activation of the AKT pathway. METHODS: Ten young (24.2 ± 0.9 years) and 10 older (66.6 ± 1.1 years) healthy subjects received a primed, constant infusion of [ring-13C(6)] L-phenylalanine and a single injection of 10,000 IU epoetin-beta or placebo in a double-blind randomized, cross-over design. 2 h after the injection, the subjects completed an acute bout of leg extension resistance exercise to stimulate skeletal muscle protein synthesis. RESULTS: Significant interaction effects in the phosphorylation levels of the members of the AKT signaling pathway indicated a differential activation of protein synthesis signaling in older subjects when compared to young subjects. However, EPO offered no synergistic effect on vastus lateralis mixed muscle protein synthesis rate in young or older subjects. CONCLUSIONS: Despite its ability to activate the AKT pathway in skeletal muscle, an acute EPO injection had no additive or synergistic effect on the exercise-induced activation of muscle protein synthesis or muscle protein synthesis signaling pathways

    Whey Protein Supplementation Post Resistance Exercise in Elderly Men Induces Changes in Muscle miRNA's Compared to Resistance Exercise Alone

    Get PDF
    Progressive muscle loss with aging results in decreased physical function, frailty, and impaired metabolic health. Deficits in anabolic signaling contribute to an impaired ability for aged skeletal muscle to adapt in response to exercise and protein feeding. One potential contributing mechanism could be exerted by dysregulation of microRNAs (miRNAs). Therefore, the aim of this study was to determine if graded protein doses consumed after resistance exercise altered muscle miRNA expression in elderly men. Twenty-three senior men (67.9 ± 0.9 years) performed a bout of resistance exercise and were randomized to consume either a placebo, 20 or 40 g of whey protein (n = 8, n = 7, and n = 8, respectively). Vastus lateralis biopsies were collected before, 2 and 4 h after exercise. Expression of 19 miRNAs, previously identified to influence muscle phenotype, were measured via RT-PCR. Of these, miR-16-5p was altered with exercise in all groups (p = 0.032). Expression of miR-15a and-499a increased only in the placebo group 4 h after exercise and miR-451a expression increased following exercise only in the 40 g whey supplementation group. Changes in p-P70S6KThr389 and p-AktSer473 following exercise were correlated with alterations in miR-208a and-499a and-206 expression, irrespective of protein dose, suggesting a possible role for miRNA in the regulation of acute phosphorylation events during early hours of exercise recovery

    The ATLAS fast tracKer system

    Get PDF
    The ATLAS Fast TracKer (FTK) was designed to provide full tracking for the ATLAS high-level trigger by using pattern recognition based on Associative Memory (AM) chips and fitting in high-speed field programmable gate arrays. The tracks found by the FTK are based on inputs from all modules of the pixel and silicon microstrip trackers. The as-built FTK system and components are described, as is the online software used to control them while running in the ATLAS data acquisition system. Also described is the simulation of the FTK hardware and the optimization of the AM pattern banks. An optimization for long-lived particles with large impact parameter values is included. A test of the FTK system with the data playback facility that allowed the FTK to be commissioned during the shutdown between Run 2 and Run 3 of the LHC is reported. The resulting tracks from part of the FTK system covering a limited η-ϕ region of the detector are compared with the output from the FTK simulation. It is shown that FTK performance is in good agreement with the simulation. © The ATLAS collaboratio

    G-CSF does not influence C2C12 myogenesis despite receptor expression in healthy and dystrophic skeletal muscle

    Get PDF
    Granulocyte-colony stimulating factor (G-CSF) increases recovery of rodent skeletal muscles after injury, and increases muscle function in rodent models of neuromuscular disease. However, the mechanisms by which G-CSF mediates these effects are poorly understood. G-CSF acts by binding to the membrane spanning G-CSFR and activating multiple intracellular signaling pathways. Expression of the G-CSFR within the haematopoietic system is well known, but more recently it has been demonstrated to be expressed in other tissues. However, comprehensive characterization of G-CSFR expression in healthy and diseased skeletal muscle, imperative before implementing G-CSF as a therapeutic agent for skeletal muscle conditions, has been lacking. Here we show that the G-CSFR is expressed in proliferating C2C12 myoblasts, differentiated C2C12 myotubes, human primary skeletal muscle cell cultures and in mouse and human skeletal muscle. In mdx mice, a model of human Duchenne muscular dystrophy (DMD), G-CSF mRNA and protein was down-regulated in limb and diaphragm muscle, but circulating G-CSF ligand levels were elevated. G-CSFR mRNA in the muscles of mdx mice was up-regulated however steady-state levels of the protein were down-regulated. We show that G-CSF does not influence C2C12 myoblast proliferation, differentiation or phosphorylation of Akt, STAT3, and Erk1/2. Media change alone was sufficient to elicit increases in Akt, STAT3, and Erk1/2 phosphorylation in C2C12 muscle cells and suggest previous observations showing a G-CSF increase in phosphoprotein signaling be viewed with caution. These results suggest that the actions of G-CSF may require the interaction with other cytokines and growth factors in vivo, however these data provides preliminary evidence supporting the investigation of G-CSF for the management of muscular dystrophy
    corecore