85 research outputs found
Organic molecules at metal surfaces: the role of functional groups in self-assembly and charge transfer
2007/2008The understanding of the interaction of organic molecules with metal surfaces
is crucial for tailoring the desired properties of future devices that can be
employed for molecular electronics or biomedical applications. Self-assembly
of complex supramolecular structures and charge transfer through molecular
films or even through single molecules are some of the properties that have
recently attracted much interest both for possible applications and for more
fundamental studies.
The molecule-surface interaction takes place thanks to the functional
groups that constitute the molecule. The choice of appropriate functional
groups of the molecules allows their use as building blocks in the fabrication
of complicate architectures [1]. In fact, the functional entities can influence
molecule-molecule and molecule-surface interactions, governing the
self-assembly of the molecules on the surface.
In particular, in the thesis I will report on the characterization by means of
Helium Atom Scattering (HAS), X-ray Photoemission Spectroscopy (XPS),
Near Edge X-ray Absorption Fine Structure (NEXAFS) and Scanning Tunneling
Microscopy (STM) of the self-assembly in ultra high vacuum (UHV)
conditions of L-methionine molecules on different metal substrates (Ag(111),
Cu(111), Au(111), Au(110)). L-methionine is an amino acid with three functional
groups which can interact with the substrate or with other molecules:
the amino (-NH2), the carboxyl (-COOH) and the thioether (-S-). Moreover,
the first two can change their charge state in a protonated amino group
(-NH+
3 ) and a deprotonated carboxyl group (-COOâ): the molecules are
called zwitterionic and it is allowed the formation of hydrogen bonds between
them. Hydrogen bonding between zwitterionic molecules is responsible for
the crystallization in the solid state. In the thesis I have studied how, depending
on the choice of the substrate and the growth conditions, L-methionine
molecules form assemblies with different morphologies and different chemical
states of the building blocks. L-methionine molecules deposited on Ag(111)
and Au(111) are in the zwitterionic state and interact strongly via hydrogen
bonding forming dimers of molecules. The weak interaction with the
substrate allows the organization of these dimers in extended bidimensional
nanogratings composed of chains of length extending in the micrometer range
and with tunable periodicity across the chains. At temperatures below 270K,
L-methionine on Cu(111) forms short aggregates of zwitterionic dimers. By
increasing the substrate temperature above 300K the charge state of the
amino group changes and also the interaction with the surface. Molecules
are anionic (-NH2 and -COOâ) and form again charged nanogratings. The
anionic state of the molecules can also be obtained on the Au(110) surface,
where the interaction of the amino and thioether groups with the gold inhibits
the formation of zwitterionic dimers via hydrogen bonding.
The functional groups in the molecules can also influence their transport
properties. The final goal of miniaturization in molecular electronics research
is the formation and characterization of a nanoelectronic device in which a
molecule between two electrodes plays the role of an active conducting element.
In such a device the interaction between the functional groups anchoring
the molecule to the electrodes and the electrodes is a crucial element
in order to understand and control the conduction. Recent STM-break junction
experiments [2] have shown that Au-molecule-Au contacts with amino (-
NH2) terminated molecules are better defined than Au-molecule-Au contacts
formed with thiol (-SH) terminated molecules [3]. The strong interaction of
thiols with gold surfaces is well known in literature and the self-assembly of
thiolated molecules is widely employed in many applications. In contrast, the
weak interaction of amino terminated molecules with gold is poorly studied.
Theoretical calculations suggest that the amine lone pair is responsible for
bonding and that it prefers to bind to undercoordinated gold atoms. Within
this framework, in the thesis I report on the study of growth of thin films of
1,4-benzenediamine and p-toluidine on two different Au surfaces, where the
atoms present different coordination: Au(111) and Au(110). Both molecules
interact more strongly with the low coordination (110) surface. By means of
Resonant Photoemission Spectroscopy (RPES) it has been possible to disentangle
molecular orbitals and determine the ones involved in the charge
transfer at the surface. In both cases the charge transfer involves states localized
also on the nitrogen atoms indicating a possible interaction of the
molecule with the surface through nitrogen atoms. I also studied the assembly
of three benzene substituted diamines on Au(111). These results
complement very well the results obtained from conduction experiments of
different amine-terminated molecules and combined with theoretical investigations
can help understanding the basics of the molecular charge transport
mechanism.
[1] Barth J.V., Costantini G., Kern K., Nature, 437 (2005) 671
[2] Venkataraman L., Klare J. E., Nuckolls C., Hybertsen M. S., Steigerwald
M. L., Nature, 442 (7105), 904 (2006)
[3] Schreiber F., Progress in Surface Science, 65 (5-8) (2000) 151Lo studio dellâinterazione di molecole organiche con superfici metalliche è
di fondamentale importanza per la progettazione di futuri dispositivi che
possiedano proprietĂ ben controllabili in modo tale che possano essere usati
per lâelettronica molecolare o per applicazioni biomediche. Lâautoassemblaggio
di complesse strutture âsupramolecolariâ e il trasferimento di carica attraverso
film molecolari o anche attraverso singole molecole sono alcune delle proprietĂ
che hanno attratto di recente grande interesse sia per le possibili applicazioni
future che per studi di tipo piĂš fondamentale.
Lâinterazione molecola-superficie avviene attraverso i gruppi funzionali
che costituiscono le molecole. Molecole con appropriate funzionalizzazioni
possono essere usate come mattoni elementari nella fabbricazione di architetture
complesse [1]. Infatti, tali gruppi funzionali possono influenzare le
interazioni del tipo molecola-molecola e molecola-superficie che governano
lâautoassemblaggio delle molecole sulla superficie.
In particolare, in questa tesi riporter`o circa la caratterizzazione mediante
diffrazione di atomi di elio (HAS), spettroscopia di fotoemissione di raggi
X (XPS), misure di assorbimento di raggi X (NEXAFS) e microscopia ad
effetto tunnel (STM) dellâautoassemblaggio in condizioni di ultra alto vuoto
(UHV) di molecole di L-metionina su diversi substrati metallici (Ag(111),
Cu(111), Au(111), Au(110)). La molecola di L-metionina `e un amminoacido
che presenta tre gruppi funzionali i quali possono interagire con il substrato
o con altre molecole: il gruppo amminico (-NH2), il gruppo carbossilico (-
COOH) e il gruppo tioetere (-S-). I primi due possono inoltre cambiare il
loro stato di carica originando un gruppo amminico protonato (-NH+
3 ) e un
gruppo carbossilico deprotonato (COOâ): in tal caso le molecole sono dette
zwitterioniche ed è permessa la formazione di legami a idrogeno tra esse.
I legami a idrogeno tra molecole zwitterioniche sono responsabili della loro
cristallizzazione nello stato solido. In questa tesi ho studiato come, a seconda
della scelta del substrato e delle condizioni di cescita, le molecole di
L-metionina formino strutture assemblate che presentano diverse morfologie
e diversi stati chimici delle molecole costituenti. Le molecole di L-metionina
depositate su Ag(111) e Au(111) sono zwitterioniche e interagiscono fortemente
tra di loro tramite legami a idrogeno a formare dimeri di molecole sulla
superficie. La debole interazione con il substrato permette lâorganizzazione
di questi dimeri in estesi reticoli bidimensionali di dimensione nanometrica
composti da catene di lunghezza nel range micrometrico e con spaziatura tra
le catene controllabile. A temperature sotto 270K, le molecole di L-metionina
su Cu(111) formano corti aggregati di dimeri zwitterionici. Aumentando la
temperatura del substrato oltre 300K lo stato di carica del gruppo amminico
cambia e quindi lâinterazione con la superficie. Le molecole sono anioniche
(-NH2 e COOâ) e formano di nuovo reticoli carichi. Lo stato anionico delle
molecole si può ottenere anche sulla superficie di Au(110) dove lâinterazione
dei gruppi amminico e tioetere con lâoro inibisce la formazione di dimeri
zwitterionici via legami a idrogeno.
I gruppi funzionali nelle molecole possono anche influenzare le loro proprietĂ di trasporto. Lo scopo finale della miniaturizzazione nella ricerca nel
campo dellâelettronica molecolare è la formazione e caratterizzazione di un
dispositivo nanoelettronico in cui una molecola immobilizzata tra due elettrodi
gioca il ruolo di elemento conduttivo attivo. In tale dispositivo il controllo
dellâinterazione tra i gruppi funzionali che tengono la molecola attaccata
gli elettrodi e gli elettrodi è un elemento cruciale per la comprensione e il
controllo della conduzione. Recenti esperimenti del tipo STM break junction
[2] hanno motrato che contatti del tipo Au-molecola-Au con molecole con terminazioni
amminiche (NH2) sono meglio definiti che contatti del medesimo
tipo con molecole con terminazione tiolica (-SH) [3]. La forte interazione
dei tioli con superfici dâoro è ben nota in letteratura e lâautoassemblaggio
di molecole con terminazione tiolica è largamente utilizzato in molte applicazioni.
In contrasto, la debole interazione di molecole con terminazione
amminica con superfici dâoro è stata poco studiata. Recenti calcoli teorici
hanno previsto che le molecole si legano alla superficie dâoro attraverso il
âlone pairâ localizzato sullâazoto e che sono preferiti i legami con atomi di
oro di bassa coordinazione. In particolare, nella tesi riporterò i risultati dello
studio della crescita di film sottili di 1,4-benzenediamina e p-toluidina su
due diverse superfici dâoro, i cui atomi di superficie presentano diversa coordinazione:
Au(111) e Au(110). Ambedue le molecole interagiscono piĂš
fortemente con la superficie di bassa coordinazione (110). Tramite la tecnica
di fotoemissione risonante (RPES) è stato possibile individuare gli orbitali
molecolari e determinare quelli coinvolti nel trasferimento di carica
allâinterfaccia. In ambedue i casi il trasferimento di carica coinvolge stati
che sono localizzati anche sullâatomo di azoto, il che indica una possibile interazione
della molecola con la superficie attraverso i gruppi amminici. Ho
anche studiato lâassemblaggio su Au(111) di tre diverse benzene-diamine con
vii
diversi sostituenti legati allâanello. Questi risultati sono un complemento ai
risultati ottenuti da esperimenti di conduzione di molecole con diverse terminazioni
amminiche e combinati con le investigazioni teoriche possono aiutare
nella comprensione dei fondamenti dei meccanismi di trasporto di carica nelle
molecole.
[1] Barth J.V., Costantini G., Kern K., Nature, 437 (2005) 671
[2] Venkataraman L., Klare J. E., Nuckolls C., Hybertsen M. S., Steigerwald
M. L., Nature, 442 (7105), 904 (2006)
[3] Schreiber F., Progress in Surface Science, 65 (5-8) (2000) 151XXI Ciclo198
Broadening of the Derivative Discontinuity in Density Functional Theory
We clarify an important aspect of density functional theories, the broadening
of the derivative discontinuity (DD) in a quantum system, with fluctuating
particle number. Our focus is on a correlated model system, the single level
quantum dot in the regime of the Coulomb blockade. We find that the
DD-broadening is controlled by the small parameter , where
is the level broadening due to contacting and is a measure of the charging
energy. Our analysis suggests, that Kondoesque fluctuations have a tendency to
increase the DD-broadening, in our model by a factor of two.Comment: 4 pages, 2 figure
Controlled laser-induced dehydrogenation of free-standing graphane probed by pumpâprobe X-ray photoemission
The effects of optical excitation on fully hydrogenated free-standing nanoporous graphene have been characterized by pumpâprobe X-ray photoemission spectroscopy. Hydrogenated graphene, known as graphane, is characterized by a sp3 hybridization, which induces a sp3 component in the C 1s core level whose intensity can be used to monitor the hydrogen content. Under optical excitation we observe a partial dehydrogenation of graphane, which we attribute to local laser-induced heating; such result allows us to estimate the thermal conductivity of the material, for which we found an upper limit of 0.2 W/(m K), four orders of magnitude smaller than that of graphene. Such stark difference, combined with the possibility of dehydrogenating the graphane substrate via laser exposure, may be exploited to engineer nanostructured heat conduction channels in organic and hybrid organicâinorganic devices. We then explored the sub-nanosecond dynamics of the C 1s core level, which displays a kinetic energy shift and a peak broadening with two different decay constants, 210 ps and 130 ps, respectively. We assign the former to surface photovoltage, and the latter to transient lattice heating
Basic pathophysiology and options of treatment for surgical management of functional tricuspid regurgitation: a systematic review
Background: Functional tricuspid regurgitation (TR) appears frequently in the presence of left-sided heart valve diseases, combined with symptoms of heart failure, worsens if left untreated, and is associated with poor patient survival. Correct indications for surgery and the choice of suitable technique, which should be based on pathophysiology of disease are of utmost importance to ensure longevity and durability of repair; particularly given the risky nature of reoperations due to residual/recurrent TR.
Methods: A systematic review was performed using Embase, Ovid Medline, Cochrane, Web of Science, and Google to deepen knowledge of major and controversial aspects of the subject.
Results: A total of 1,579 studies were reviewed, and 32 of these were enclosed in the final review: 13 studies were primarily focused on pathophysiology and preoperative assessment of functional TR; 19 studies on surgical treatment of functional TR. A total of 15,509 patients were included.
Conclusions: Indications for treatment of TR are based on the severity of regurgitation (grading), as well as on the presence of signs and symtoms of right-sided heart failure and on the extent of tricuspid annular dilation, leaflet tethering, and pulmonary hypertension (staging of disease). Despite improved knowledge of the underlying pathophysiology of TR, issues regarding indications for treatment and options of repair remain present. There is no consensus within the scientific community, for the preferred method to quantify the severity of TR; the recently introduced 5-grade TR classification based on objective quantitative parameters has not yet become common practice. The assessment of TR during stress exercise is rarely performed, though it takes into account the changes in severity of regurgitation that occur under different physiological conditions. Magnetic resonance imaging, which is the gold standard for the right heart evaluation is occasionally carried out before surgery. The threshold beyond which the tricuspid annular dilation should be repaired is unclear and recent studies put forward the idea that it may be lower than current recommendations. Tricuspid valve annuloplasty is the most adopted surgical option today. However, the ideal annuloplasty device remains elusive. In addition, as severe leaflet tethering cannot be addressed by annuloplasty alone, the addition of new techniques further increasing leaflet coaptation might optimize long-term valve continence. Further investigations are needed to address all these issues, alongside the potential of percutaneous options
Controlled laser-induced dehydrogenation of free-standing graphane probed by pumpâprobe X-ray photoemission
The effects of optical excitation on fully hydrogenated free-standing nanoporous graphene have been characterized by pumpâprobe X-ray photoemission spectroscopy. Hydrogenated graphene, known as graphane, is characterized by a sp3 hybridization, which induces a sp3 component in the C 1s core level whose intensity can be used to monitor the hydrogen content. Under optical excitation we observe a partial dehydrogenation of graphane, which we attribute to local laser- induced heating; such result allows us to estimate the thermal conductivity of the material, for which we found an upper limit of 0.2 W/(m K), four orders of magnitude smaller than that of graphene. Such stark difference, combined with the possibility of dehydrogenating the graphane substrate via laser exposure, may be exploited to engineer nanostructured heat conduction channels in organic and hybrid organicâinorganic devices. We then explored the sub-nanosecond dynamics of the C 1s core level, which displays a kinetic energy shift and a peak broadening with two different decay constants, 210 ps and 130 ps, respectively. We assign the former to surface photovoltage, and the latter to transient lattice heating
Ultrafast Ge-Te bond dynamics in a phase-change superlattice
A long-standing question for avant-garde data storage technology concerns the nature of the ultrafast photoinduced phase transformations in the wide class of chalcogenide phase-change materials (PCMs). Overall, a comprehensive understanding of the microstructural evolution and the relevant kinetics mechanisms accompanying the out-of-equilibrium phases is still missing. Here, after overheating a phase-change chalcogenide superlattice by an ultrafast laser pulse, we indirectly track the lattice relaxation by time resolved x-ray absorption spectroscopy (tr-XAS) with a sub-ns time resolution. The approach to the tr-XAS experimental results reported in this work provides an atomistic insight of the mechanism that takes place during the cooling process; meanwhile a first-principles model mimicking the microscopic distortions accounts for a straightforward representation of the observed dynamics. Finally, we envisage that our approach can be applied in future studies addressing the role of dynamical structural strain in PCMs.M.M. acknowledges the support of the BACH beamline staff during the synchrotron experiments and Roberta Ciprian for insightful discussions. This work was supported by EU within FP7 project PASTRY [GA 317764]
Relating Energy Level Alignment and Amine-Linked Single Molecule Junction Conductance
Using photoemission spectroscopy, we determine the relationship between
electronic energy level alignment at a metal-molecule interface and
single-molecule junction transport data. We measure the position of the highest
occupied molecular orbital (HOMO) relative to the Au metal Fermi level for
three 1,4-benzenediamine derivatives on Au(111) and Au(110) with ultraviolet
and resonant x-ray photoemission spectroscopy. We compare these results to
scanning tunnelling microscope based break-junction measurements of single
molecule conductance and to first-principles calculations. We find that the
energy difference between the HOMO and Fermi level for the three molecules
adsorbed on Au(111) correlate well with changes in conductance, and agree well
with quasiparticle energies computed from first-principles calculations
incorporating self-energy corrections. On the Au(110) which present Au atoms
with lower-coordination, critical in break-junction conductance measurements,
we see that the HOMO level shifts further from the Fermi level. These results
provide the first direct comparison of spectroscopic energy level alignment
measurements with single molecule junction transport data
Phase separation in the non-equilibrium Verwey transition in magnetite
We present equilibrium and out-of-equilibrium studies of the Verwey
transition in magnetite. In the equilibrium optical conductivity, we find a
step-like change at the phase transition for photon energies below about 2 eV.
The possibility of triggering a non-equilibrium transient metallic state in
insulating magnetite by photo excitation was recently demonstrated by an x-ray
study. Here we report a full characterization of the optical properties in the
visible frequency range across the non-equilibrium phase transition. Our
analysis of the spectral features is based on a detailed description of the
equilibrium properties. The out-of-equilibrium optical data bear the initial
electronic response associated to localized photo-excitation, the occurrence of
phase separation, and the transition to a transient metallic phase for
excitation density larger than a critical value. This allows us to identify the
electronic nature of the transient state, to unveil the phase transition
dynamics, and to study the consequences of phase separation on the
reflectivity, suggesting a spectroscopic feature that may be generally linked
to out-of-equilibrium phase separation
Ultrafast adsorbate excitation probed with sub-ps resolution XAS
We use a pump-probe scheme to measure the time evolution of the C K-edge
X-ray absorption spectrum (XAS) from CO/Ru(0001) after excitation by an
ultrashort high-intensity optical laser pulse. Due to the short duration of the
X-ray probe pulse and precise control of the pulse delay, the
excitation-induced dynamics during the first ps after the pump can be resolved
with unprecedented time resolution. By comparing with theoretical (DFT)
spectrum calculations we find high excitation of the internal stretch and
frustrated rotation modes occurring within 200 fs of laser excitation, as well
as thermalization of the system in the ps regime. The ~100 fs initial
excitation of these CO vibrational modes is not readily rationalized by
traditional theories of nonadiabatic coupling of adsorbates to metal surfaces,
e. g. electronic frictions based on first order electron-phonon coupling or
transient population of adsorbate resonances. We suggest that coupling of the
adsorbate to non-thermalized electron-hole pairs is responsible for the
ultrafast initial excitation of the modes.Comment: 16 pages, 16 figures. To be published in Physical Review Letters:
https://journals.aps.org/prl/accepted/c1070Y74M8b18063d9cd0221b000631d50ef7a24
- âŚ