1,639 research outputs found

    Comment on "The Lamb Shift and Ultra High Energy Cosmic Rays" and Comment on "Vacuum Polarization Energy Losses of High Energy Cosmic Rays"

    Get PDF
    The cosmic rays spectrum has been shown to extend well beyond 10^20 eV. With nearly 20 events observed in the last 40 years, it is now established that particles with energies near or above 10^21 eV. No nearby astrophysical object has been shown to correlate with the arrival directions of the highest energy events, yet the exponential cut-off in the high energy end of the spectrum one expects to see in the case of far sources is not visible. It was recently pointed out that the influence of the vacuum of quantum electrodynamics on particle propagation could explain qualitatively this mystery. This note is a critic to these ideas.Comment: 4 pages, note on second paper correcte

    The Small Contribution of Molecular Bremsstrahlung Radiation to the Air-Fluorescence Yield of Cosmic Ray Shower Particles

    Full text link
    A small contribution of molecular Bremsstrahlung radiation to the air-fluorescence yield in the UV range is estimated based on an approach previously developed in the framework of the radio-detection of showers in the gigahertz frequency range. First, this approach is shown to provide an estimate of the main contribution of the fluorescence yield due to the de-excitation of the C 3Πu^3\Pi_{\mathrm{u}} electronic level of nitrogen molecules to the B 3Πg^3\Pi_{\mathrm{g}} one amounting to Y[337]=(6.05±1.50) Y_{[337]}=(6.05\pm 1.50)~ MeV1^{-1} at 800 hPa pressure and 293 K temperature conditions, which compares well to previous dedicated works and to experimental results. Then, under the same pressure and temperature conditions, the fluorescence yield induced by molecular Bremsstrahlung radiation is found to be Y[330400]MBR=0.10 Y_{[330-400]}^{\mathrm{MBR}}=0.10~ MeV1^{-1} in the wavelength range of interest for the air-fluorescence detectors used to detect extensive air showers induced in the atmosphere by ultra-high energy cosmic rays. This means that out of 175 \simeq 175~ photons with wavelength between 330 and 400 nm detected by fluorescence detectors, one of them has been produced by molecular Bremsstrahlung radiation. Although small, this contribution is not negligible in regards to the total budget of systematic uncertainties when considering the absolute energy scale of fluorescence detectors.Comment: 9 pages, 2 figures, accepted for publication in Astropart. Phys. arXiv admin note: text overlap with arXiv:1601.0055

    Searches for Large-Scale Anisotropies of Cosmic Rays: Harmonic Analysis and Shuffling Technique

    Full text link
    The measurement of large scale anisotropies in cosmic ray arrival directions is generally performed through harmonic analyses of the right ascension distribution as a function of energy. These measurements are challenging due to the small expected anisotropies and meanwhile the relatively large modulations of observed counting rates due to experimental effects. In this paper, we present a procedure based on the shuffling technique to carry out these measurements, applicable to any cosmic ray detector without any additional corrections for the observed counting rates.Comment: 22 pages, 10 figures, to appear in Astroparticle Physic

    Voyage au Québec - 1er épisode

    Get PDF
    Au printemps 2001, la Section étude et recherche de l’ABF a organisé un voyage d’étude au Québec qui a donné lieu à plusieurs rapports, riches d’enseignements et de confrontations pour nos deux pays. Nous vous les présenterons au fil des numéros de BIBLIOthèque(s) et commençons ce feuilleton par la visite de trois bibliothèques publiques, commentée par Pascale Deligny et Catherine Ribet-Picard

    Estimates of multipolar coefficients to search for cosmic ray anisotropies with non-uniform or partial sky coverage

    Full text link
    We study the possibility to extract the multipolar moments of an underlying distribution from a set of cosmic rays observed with non-uniform or even partial sky coverage. We show that if the degree is assumed to be upper bounded by LL, each multipolar moment can be recovered whatever the coverage, but with a variance increasing exponentially with the bound LL if the coverage is zero somewhere. Despite this limitation, we show the possibility to test predictions of a model without any assumption on LL by building an estimate of the covariance matrix seen through the exposure function.Comment: 20 pages, 8 figure

    An Estimate of the Spectral Intensity Expected from the Molecular Bremsstrahlung Radiation in Extensive Air Showers

    Full text link
    A detection technique of ultra-high energy cosmic rays, complementary to the fluorescence technique, would be the use of the molecular Bremsstrahlung radiation emitted by low-energy electrons left after the passage of the showers in the atmosphere. The emission mechanism is expected from quasi-elastic collisions of electrons produced in the shower by the ionisation of the molecules in the atmosphere. In this article, a detailed calculation of the spectral intensity of photons at ground level originating from the transitions between unquantised energy states of free ionisation electrons is presented. In the absence of absorption of the emitted photons in the plasma, the obtained spectral intensity is shown to be 5 10^{-26} W m^{-2}Hz^{-1} at 10 km from the shower core for a vertical shower induced by a proton of 10^{17.5} eV.Comment: 16 pages, 6 figures, accepted in Astroparticle Physics. Compared to v1 version: 1. Inclusion of ro-vibrational processes. 2. Use of more accurate ionization potential values and energy distribution of the secondary electron
    corecore