44 research outputs found

    Review of anthraquinone applications for pest management and agricultural crop protection

    Get PDF
    We have reviewed published anthraquinone applications for international pest management and agricultural crop protection from 1943 to 2016. Anthraquinone (AQ) is commonly found in dyes, pigments and many plants and organisms. Avian repellent research with AQ began in the 1940s. In the context of pest management, AQ is currently used as a chemical repellent, perch deterrent, insecticide and feeding deterrent in many wild birds, and in some mammals, insects and fishes. Criteria for evaluation of effective chemical repellents include efficacy, potential for wildlife hazards, phytotoxicity and environmental persistence. As a biopesticide, AQ often meets these criteria of efficacy for the non-lethal management of agricultural depredation caused by wildlife. We summarize published applications of AQ for the protection of newly planted and maturing crops from pest birds. Conventional applications of AQ-based repellents include preplant seed treatments [e.g. corn (Zea mays L.), rice (Oryza sativa L.), sunflower (Helianthus annuus L.), wheat (Triticum spp.), millet (Panicum spp.), sorghum (Sorghumbicolor L.), pelletized feed and forest tree species] and foliar applications for rice, sunflower, lettuce (Lactuca sativa L.), turf, sugar beets (Beta vulgaris L.), soybean (Glycine max L.), sweet corn and nursery, fruit and nut crops. In addition to agricultural repellent applications, AQ has also been used to treat toxicants for the protection of non-target birds. Few studies have demonstrated AQ repellency in mammals, including wild boar (Sus scrofa, L.), thirteen-lined ground squirrels (Ictidomys tridecemlineatus,Mitchill), black-tailed prairie dogs (Cyomys ludovicainus, Ord.), common voles (Microtus arvalis, Pallas), housemice (Musmusculus, L.), Tristram’s jirds (Meriones tristrami, Thomas) and black rats (Rattus rattus L.). Natural sources of AQ and its derivatives have also been identified as insecticides and insect repellents. As a natural or synthetic biopesticide, AQ is a promising candidate for many contexts of non-lethal and insecticidal pest management

    Efficacy of repellent-treated structural barriers for Richardson’s ground squirrels (\u3ci\u3eUrocitellus richardsonii\u3c/i\u3e (Sabine)) and house mice (\u3ci\u3eMus musculus\u3c/i\u3e L.)

    Get PDF
    The worldwide presence of vertebrate pests such as rodents has created a need for non-lethal control methods that can be applied to integrated pest management plans. Chemical repellents are often a useful wildlife management tool as they can be directly applied to a commodity or structure to prevent infringement and damage. We assessed the efficacy of an anthraquinone (AQ)-based repellent in a structural barrier model against Richardson’s ground squirrels (Urocitellus richardsonii (Sabine)) (RGS) and house mice (Mus musculus L.). The AQbased repellent was applied to pieces of burlap which were secured over each end of a small section of PVC pipe. Unadulterated enrichment food was then offered within the enclosed PVC pipe to motivate interactions with repellent-treated and untreated burlap barriers. Defeat of the barrier was defined as a physical breach by means of chewing the burlap or burlap/repellent barrier such that the test animal was able to gain entry to the hide and the enrichment food. RGS defeated 55% (±7.9) of untreated barriers, 25% (±6.8) of barriers treated with 50% dilution AQ-based repellent, and 27.5% (±5.6) of barriers treated with 0% dilution AQ-based repellent. House mice defeated 100% (±0.0) of untreated barriers, 20.5% (±6.4) of barriers treated with 50% dilution AQbased repellent, and 45.5% (±7.8) of barriers treated with 0% dilution AQ-based repellent. Relative to untreated barriers, AQ treatments reduced defeat of the barrier by 50–55% for RGS and 55–80% for house mice. RGS showed a marked decrease in consumption of enrichment food after exposure to AQ. The 0% dilution of AQtreated structural barrier had more individuals of both RGS and house mice chew through the structural barrier than the 50% dilution despite the increased concentration of AQ. We hypothesized that the additional water in the 50% dilution may have allowed for greater absorption of the repellent throughout the burlap fibers, thus enabling greater interaction with the AQ-treated barriers. Our results indicate that AQ-based repellents show promise as structural barriers for RGS and house mice

    Repellent application strategy for wild rodents and cottontail rabbits

    Get PDF
    Effective chemical repellents and repellent application strategies are needed to manage damages caused by wild rodents and rabbits to agricultural resources. For the purpose of comparatively investigating the behavioral response of wild rodents and rabbits to a chemical repellent, we experimentally evaluated the concentration-response relationship of an anthraquinone-based repellent in California voles (Microtus californicus Peale), Richardson’s ground squirrels (Urocitellus richardsonii Sabine), deer mice (Peromyscus maniculatus Wagner) and cottontail rabbits (Sylvilagus audubonii Baird) in captivity. We observed 52–56% feeding repellency for whole oats treated with 10,800ppm anthraquinone or 18,500ppmanthraquinone in mice and squirrels, and 84–85% repellency for oats treated with 18,300ppm anthraquinone or 19,600ppm anthraquinone in voles and rabbits, respectively. In addition to providing the negative postingestive consequences necessary for conditioned food avoidance, the anthraquinonebased repellent also absorbs ultraviolet (UV) wavelengths that are visible to most wild birds. For the purpose of developing a repellent application strategy to modify the behavior of vertebrate pests, we therefore conducted a conditioned avoidance experiment by offering repellent- and UV-treated food to California voles in a subsequent behavioral assay. Relative to unconditioned test subjects (P = 0.3161), voles conditioned with the UV, postingestive repellent subsequently avoided whole oats treated only with an UV cue (P = 0.0109). These behavioral responses to anthraquinone-based repellents and UV feeding cues can be exploited as a repellent application strategy for wild mammals. We discuss potential applications of preplant seed treatments and surface treatments that include postingestive repellents and related visual cues for the protection of agricultural resources associated with mammalian depredation

    Repellent application strategy for wild rodents and cottontail rabbits

    Get PDF
    Effective chemical repellents and repellent application strategies are needed to manage damages caused by wild rodents and rabbits to agricultural resources. For the purpose of comparatively investigating the behavioral response of wild rodents and rabbits to a chemical repellent, we experimentally evaluated the concentration-response relationship of an anthraquinone-based repellent in California voles (Microtus californicus Peale), Richardson’s ground squirrels (Urocitellus richardsonii Sabine), deer mice (Peromyscus maniculatus Wagner) and cottontail rabbits (Sylvilagus audubonii Baird) in captivity. We observed 52–56% feeding repellency for whole oats treated with 10,800ppm anthraquinone or 18,500ppmanthraquinone in mice and squirrels, and 84–85% repellency for oats treated with 18,300ppm anthraquinone or 19,600ppm anthraquinone in voles and rabbits, respectively. In addition to providing the negative postingestive consequences necessary for conditioned food avoidance, the anthraquinonebased repellent also absorbs ultraviolet (UV) wavelengths that are visible to most wild birds. For the purpose of developing a repellent application strategy to modify the behavior of vertebrate pests, we therefore conducted a conditioned avoidance experiment by offering repellent- and UV-treated food to California voles in a subsequent behavioral assay. Relative to unconditioned test subjects (P = 0.3161), voles conditioned with the UV, postingestive repellent subsequently avoided whole oats treated only with an UV cue (P = 0.0109). These behavioral responses to anthraquinone-based repellents and UV feeding cues can be exploited as a repellent application strategy for wild mammals. We discuss potential applications of preplant seed treatments and surface treatments that include postingestive repellents and related visual cues for the protection of agricultural resources associated with mammalian depredation

    Applications of Sensory Ecology for Wildlife Damage Management

    Get PDF
    Human-wildlife conflicts typically involve fundamental processes associated with the feeding behavior and/or the spatial behavior of wildlife. Thus, most human-wildlife conflicts arise from wildlife consuming products and/or wildlife occupying places valued by humans. For mammals, taste is the most important sensory cue for selecting nutrients and avoiding toxins. Most birds use both flavor (i.e. taste, odor, texture) and visual cues for their food selection process. We previously learned that an ultraviolet visual cue can enhance the repellency of an anthraquinone-based repellent for blackbirds, starlings, Canada geese and wild turkeys. Although the ultraviolet cue is not itself aversive, novel repellent formulations including ultraviolet cues have provided repellent efficacy at reduced concentrations of the repellent active ingredient. Ultraviolet repellent formulations are currently being developed for the protection of ripening agricultural crops from bird depredation. With regard to spatial behavior, exteroceptive sensory cues (e.g. visual, auditory, tactile cues) are reliably used for patch selection. We suggest that sensory cues and their paired consequences can be exploited for the development and application of effective strategies for wildlife damage management

    Repellent Surface Applications for Pest Birds

    Get PDF
    Common pest birds in the United States include the non-native European starling (Sturnus vulgaris), house sparrow (Passer domesticus), and the pigeon (Columba livia domestica), as well as native birds including Canada geese (Branta canadensis) and gull species (Laridae). Large concentrations of pest birds can create human health hazards and monetary losses due to consumption of crops, depredation, and fecal contamination and accumulation. Fecal contamination hazards include the potential spread of zoonotic diseases including antimicrobial-resistant zoonoses and human injury due to the accumulation of fecal material on walking surfaces. Additionally, fecal accumulation causes structural and aesthetic damage due to the accelerated deterioration of building materials and increased maintenance costs. Methods to alleviate hazards and damages from aggregations of pest birds are needed. In a series of 3 experiments conducted in Fort Collins, Colorado, USA, between 2016 and 2018, we evaluated 3 surface-application repellent formulations for the reduction of fecal accumulations due to European starlings: Airepel® HC with castor oil, an anthraquinone-based repellent; Airepel HC with castor oil without anthraquinone; and MS2, a novel inert formulation with a tacky, oily texture. We compared each formulation directly to an untreated control. All 3 formulations reduced fecal accumulations beneath treated aluminum perches as compared to fecal accumulations beneath untreated aluminum perches. Interestingly, both formulations that contained no anthraquinone worked equally well or better than Airepel HC with castor oil, the anthraquinone-based formulation. The benefits of an exclusively inert formulation include less risk to applicators and non-target species. Comprehensive experimental field testing of these surface-application repellent formulations is warranted

    Nutritional depletion of total mixed rations by red-winged blackbirds and projected impacts on dairy cow performance

    Get PDF
    This Research Communication describes an investigation of the nutritional depletion of total mixed rations (TMR) by pest birds. We hypothesized that species-specific bird depredation of TMR can alter the nutritional composition of the ration and that these changes can negatively impact the performance of dairy cows. Blackbirds selected the high energy fraction of the TMR (i.e., flaked corn) and reduced starch, crude fat and total digestible nutrients during controlled feeding experiments. For Holsteins producing 37·1 kg of milk/d, dairy production modeling illustrated that total required net energy intake (NEI) was 35·8 Mcal/d. For the reference TMR unexposed to blackbirds and the blackbird-consumed TMR, NEI supplied was 41·2 and 37·8 Mcal/d, and the resulting energy balance was 5·4 and 2·0 Mcal/d, respectively. Thus, Holsteins fed the reference and blackbird-consumed TMR were estimated to gain one body condition score in 96 and 254 d, and experience daily weight change due to reserves of 1·1 and 0·4 kg/d, respectively. We discuss these results in context of an integrated pest management program for mitigating the depredation caused by pest birds at commercial dairies

    Nutritional depletion of total mixed rations by European starlings: Projected effects on dairy cow performance and potential intervention strategies to mitigate damage

    Get PDF
    European starlings are an invasive bird species in North America that are known to cause damage to commercial dairies through the consumption of total mixed rations (TMR) destined for dairy cows. We hypothesized that large foraging flocks of starlings alter the physical composition of TMR, and that this change may be significant enough to affect milk production. To better determine if production losses could potentially occur in commercial dairies as a consequence of feed consumption by foraging flocks of starlings, we conducted controlled feeding experiments using a TMR sourced from a commercial dairy that is chronically plagued with seasonal starling damage. European starlings selected the high-energy fraction of the TMR and reduced starch and crude fat availability. Using the dairy National Research Council production model equations, the nutritional changes measured in the controlled feeding experiments could potentially reduce the productivity of dairies. Model output suggests that for Holsteins producing 32 kg of milk/d, total required net energy intake (NEI) was 31.5 Mcal/d. Within the reference TMR, NEI supplied was 29.3 Mcal/d, whereas within the starling-consumed TMR NEI supplied was 27.7 Mcal/d. Following our nutrition experiments, we assessed the efficacy of pelleted feed as a deterrent strategy for bird damage management in commercial dairies. Six different pelleted feed treatments of differing diameter were offered to starlings. All pellets of 0.95 cm diameter or larger inhibited starling consumption by ≥79%
    corecore