33 research outputs found

    Evaluation of an explanted porcine skin model to investigate infection with the dermatophyte Trichophyton rubrum.

    Get PDF
    Dermatophytosis is a fungal infection of skin, hair and nails, and the most frequently found causative agent is Trichophyton rubrum. The disease is very common and often recurring, and it is therefore difficult to eradicate. To develop and test novel treatments, infection models that are representative of the infection process are desirable. Several infection models have been developed, including the use of cultured cells, isolated corneocytes, explanted human skin or reconstituted human epidermis. However, these have various disadvantages, ranging from not being an accurate reflection of the site of infection, as is the case with, for example, cultured cells, to being difficult to scale up or having ethical issues (e.g., explanted human skin). We therefore sought to develop an infection model using explanted porcine skin, which is low cost and ethically neutral. We show that in our model, fungal growth is dependent on the presence of skin, and adherence of conidia is time-dependent with maximum adherence observed after ~ 2 h. Scanning electron microscopy suggested the production of fibril-like material that links conidia to each other and to skin. Prolonged incubation of infected skin leads to luxurious growth and invasion of the dermis, which is not surprising as the skin is not maintained in conditions to keep the tissue alive, and therefore is likely to lack an active immune system that would limit fungal growth. Therefore, the model developed seems useful to study the early stages of infection. Furthermore, we demonstrate that the model can be used to test novel treatment regimens for tinea infections

    A microtiter plate-based quantitative method to monitor the growth rate of dermatophytes and test antifungal activity

    Get PDF
    Dermatophytosis is one of the most common superficial fungal infections, which is mainly caused by filamentous fungi such as Trichophyton species. A challenging aspect in dermatophyte research is the lack of a straightforward method to measure the rate of growth, in particular when growing dermatophytes in small volumes such as in microtitre plates. However, one characteristic of dermatophytes is their ability to produce compounds such as ammonia that make the growth medium more alkaline. The objective of this study was to test whether the change in pH in a liquid medium, colourimetrically established using the indicator phenol red, was linearly and directly proportional to the growth rate for Trichophyton rubrum and Trichophyton interdigitale. The changes in the colour determined by the phenol-red based assay showed a good correlation with the amount of fungal biomass over an incubation period of 24-120 h. The functionality of the phenol red assay was also validated in experiments on the growth of T. rubrum in the presence of antifungals. The changes in colour showed a clear dose-response relationship compounds and enabled determination of the minimum inhibitory concentration. The phenol red assay is thus a simple and straightforward assay to monitor the rate of growth of Trichophyton spp. and test antifungal activit

    Effective use of transdermal drug delivery in children

    Get PDF

    Phosphate Loading does not improve 30-km cycling time-trial performance in trained cyclists:phosphate and exercise performance

    Get PDF
    Phosphate is integral to numerous metabolic processes, several of which strongly predict exercise performance (i.e., cardiac function, oxygen transport, and oxidative metabolism). Evidence regarding phosphate loading is limited and equivocal, at least partly because studies have examined sodium phosphate supplements of varied molar mass (e.g., mono/di/tribasic, dodecahydrate), thus delivering highly variable absolute quantities of phosphate. Within a randomized cross-over design and in a singleblind manner, 16 well-trained cyclists (age 38 ± 16 years, mass 74.3 ± 10.8 kg, training 340 ± 171 min/week; mean ± SD) ingested either 3.5 g/day of dibasic sodium phosphate (Na2HPO4: 24.7 mmol/day phosphate; 49.4 mmol/day sodium) or a sodium chloride placebo (NaCl: 49.4 mmol/day sodium and chloride) for 4 days prior to each of two 30-km time trials, separated by a washout interval of 14 days. There was no evidence of any ergogenic benefit associated with phosphate loading. Time to complete the 30-km time trial did not differ following ingestion of sodium phosphate and sodium chloride (3,059 ± 531 s vs. 2,995 ± 467 s). Accordingly, neither absolute mean power output (221 ± 48 W vs. 226 ± 48 W) nor relative mean power output (3.02 ± 0.78 W/kg vs. 3.08 ± 0.71 W/kg) differed meaningfully between the respective intervention and placebo conditions. Measures of cardiovascular strain and ratings of perceived exertion were very closely matched between treatments (i.e., average heart rate 161 ± 11 beats per minute vs. 159 ± 12 beats per minute; Δ2 beats per minute; and ratings of perceived exertion 18 [14- 20] units vs. 17 [14-20] units). In conclusion, supplementing with relatively high absolute doses of phosphate (i.e., &gt;10 mmol daily for 4 days) exerted no ergogenic effects on trained cyclists completing 30-km time trials.</p

    Comparison of drug release from poly(lactide-co-glycolide) microspheres and novel fibre formulations

    Get PDF
    Intraperitoneal cisplatin delivery has recently been shown to benefit ovarian cancer patients. Cisplatin-containing poly(lactide-co-glycolide) (PLGA) microspheres have been proposed for cisplatin delivery. The drug loading of cisplatin containing microspheres produced elsewhere is 3–10%w. Similar microspheres are reported here with a mean diameter of 38.8 µm, and a drug loading of 11.7%w, but using ethyl acetate as a safer solvent. In addition, novel formulations of cisplatin-containing solid and hollow PLGA 65:35 (lactide:glycolide) fibres were prepared and are reported here for the first time. PLGA hollow fibres were produced by phase inversion with a high drug loading of 27%w. Mechanistic mathematical models were applied to the cisplatin release profiles to allow quantitative comparison of microsphere, solid fibre and hollow fibre formulations. The diffusion coefficient of cisplatin eluting from a typical batch of PLGA microspheres was 4.8 × 10−13 cm2 s−1; this low diffusivity of cisplatin in microspheres was caused by the low porosity of the polymer matrix. The diffusion coefficients of cisplatin eluting from a batch of PLGA solid fibres and hollow fibres were 6.1 × 10−10 and 3.3 × 10−10 cm2 s−1, respectively. These fibres allowed the controlled release of high doses of cisplatin over four days and may represent an improvement in slow release technology for treatment of ovarian cancer. </jats:p

    Dermatopharmacokinetics: factors influencing drug clearance from the stratum corneum

    Get PDF
    PURPOSE: The dermatopharmacokinetic methodology, in which tape stripping of the stratum corneum (SC) is used to access the amount of drug accumulated in the skin barrier, has been proposed for the quantification of topical drug bioavailability. This investigation examined the clearance phase of a model drug from the SC after a short application of an infinite dose. METHODS: A saturated solution of ibuprofen in propylene glycol/water was applied to the forearm of human volunteers for 30 min. The formulation was then removed and the drug profile across the SC was assessed immediately, and over the next 4 h. RESULTS: The clearance phase depends only on drug diffusivity in the SC. However, the expected, progressive "flattening" of the concentration profiles with increasing time post-formulation removal was not observed. It was subsequently deduced, using infrared spectroscopy, that the rapid percutaneous diffusion of propylene glycol, relative to ibuprofen, resulted in the transient maintenance of a saturated drug concentration at the SC surface even after removal of the original formulation. CONCLUSIONS: The important role of formulation excipients in topical delivery is demonstrated, and the local disposition of cosolvents within the SC may impact significantly on drug dermatopharmacokinetics and local bioavailability

    Textile-based non-invasive lithium drug monitoring: A proof-of-concept study for wearable sensing

    Get PDF
    Flexible wearable chemical sensors are emerging tools which target diagnosis and monitoring of medical conditions. One of the potential applications of wearable chemical sensors is therapeutic drug monitoring for drugs that have a narrow therapeutic range such as lithium. We have investigated the possibility of developing a fibre-based device for non-invasive lithium drug monitoring in interstitial fluid. A flexible cotton-based lithium sensor was coupled with a carbon fibre-based reference electrode to obtain a potentiometric device. In vitro reverse iontophoresis experiments were performed to extract Li+ from under porcine skin by applying a current density of 0.4 mA cm-2 via two electrodes. Carbon fibre-based reverse iontophoresis electrodes were fabricated and used instead of a conventional silver wire-based version and comparable results were obtained. The fibre-based Li+ sensor and reference electrodes were capable of determining the Li+ concentration in samples collected via reverse iontophoresis and the results compared well to those obtained by ion chromatography. Additionally, biocompatibility of the used materials have been tested. Promising results were obtained which confirm the possibility of monitoring lithium in interstitial fluid using a wearable sensor
    corecore