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Abstract

The objective of this study was to examine the use of transdermal iontophoresis for the delivery of
ranitidine hydrochloride in children. Constant, direct current, anodal iontophoresis of ranitidine was performed in
vitro across dermatomed pig skin. The effect of donor vehicle, current intensity, and drug concentration were first
examined using aqueous solutions. It was found that drug delivery was higher at pH 7 (donor: 5 mM Tris) than pH
5.6 (donor: water). In the presence of low levels of competing background electrolyte, ranitidine delivery
increased linearly with applied current but was independent of the donor drug concentration. The second part of
the study evaluated two Pluronic® F-127 gels as potential vehicles for ranitidine delivery. The formulations were
characterised in terms of apparent viscosity, conductivity and passive permeation measurements. lontophoretic
delivery of ranitidine was only slightly affected when delivered from the gels relative to aqueous solutions.
Overall the results demonstrated that therapeutic paediatric doses of ranitidine (neonates: 0.09-0.17 pmol/kg.h;
1 month to 12 years: 0.36-0.71 umol/kg.h) could be easily achieved by transdermal iontophoresis with simple gel
patches of practical surface area (0.2-1.5 cm?/kg).

Keywords: lontophoresis; ranitidine; paediatric drug delivery; topical gels; transdermal drug delivery
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1. Introduction

Ranitidine is used extensively in paediatric medicine especially in intensive care. It is prescribed in a variety
of clinical indications for which gastric acid reduction is necessary (British National Formulary for Children). This
includes gastro-oesophageal reflux disease, benign gastric and duodenal ulcerations, prophylaxis of acid
aspiration prior to surgery, and treatment as well as prophylaxis from stress-induced gastrointestinal ulcers and
consequent haemorrhage. Methods of administration include oral and intravenous delivery. The oral
bioavailability of ranitidine is highly variable between paediatric subjects especially in neonates (40-80% (Garg et
al., 1983; Blumer et al., 1985; Vanhecken et al., 1982)). This is due to incomplete absorption of the drug from the
gastro-intestinal tract as well as first-pass metabolism. The need for frequent dosing (2 to 4 times a day), due to
the short half-life of the drug (2-3 hours (Blumer et al., 1985; Lugo et al., 2001)), and the bitter taste of the oral
solution, reduce child compliance. In addition, some formulations contain up to 8% alcohol and no oral
preparation is licensed for use in children under 3 years of age; parenteral delivery is only licensed for children
over 6 months old (British National Formulary for Children) and has inherent pitfalls such as pain and distress,
invasiveness, risk of infection, and technical difficulty.

The transdermal route can provide an alternative approach for the delivery of ranitidine. The relatively non-
invasive nature of this administration method renders the application particularly attractive in paediatric
medicine. lontophoresis is an interesting option because it is possible to control delivery rates over extended
periods of time. The technique involves passing a small electrical current (< 0.5 mA/cm?) through conductive
vehicles in contact with the skin. As a result, ions migrate through the skin towards the electrode of opposite
charge (Phipps and Gyory, 1992). In addition, electroosmosis is induced due to the negative charge of the skin at
physiological pH (Burnette and Ongpipattanakul, 1987; Luzardo-Alvarez et al., 1998; Kim et al., 1993), and this
facilitates the transport of neutral and positively-charged molecules across the skin in the anode-to-cathode
direction. Ranitidine hydrochloride is a potential candidate for iontophoresis. Target rates for therapeutic delivery
(i.e., the recommended intravenous infusion rates currently used in clinical care (British National Formulary for
Children)) are 0.09-0.17 umol/kg.h in neonates, and 0.36-0.71 umol/kg.h in children from 1 month to 12 years.

Ranitidine (free base) has a molecular weight of 314.4 Da, is freely soluble in water, and has an octanol-
water partition coefficient close to 2 (log P ~0.3) (Moffat et al. 2001). Ranitidine has two basic groups with pK;
values of 2.3 and 8.2 (Brittain, 2007) and therefore exists primarily as a monovalent cation between pH 4 and 7.
Anodal iontophoresis of ranitidine within this pH range is therefore anticipated to be efficient, predominantly due
to electromigration and supplemented with a smaller electroosmotic contribution.

In vitro investigations of transdermal iontophoresis are typically performed using solution-based vehicles
because of easy preparation and manipulation. However, transdermal systems for clinical applications are
invariably semi-solid or polymeric formulations, such as hydrogels. The latter are attractive because they provide
sufficient rigidity to adhere well to the skin (without leakage) and their high water content provides a suitable
conductive medium for iontophoresis. Nonetheless, it is important to test the in vitro delivery of the drug of
interest from such preparations and to mimic in vivo use as closely as possible. Because non-liquid vehicles may
retard drug transport, it is crucial to ensure that any formulation effects are resolved before development of a
final product.

Pluronic® F-127 is a surface active gel-forming agent frequently used in topical skin applications (Collett,
2006; Escobar-Chavez et al., 2006). It is composed of triblocks of polyoxyethylene-polyoxypropylene copolymers
at a ratio of 70% ethylene oxide (hydrophilic) and 30% propylene oxide (hydrophobic), and with an average
molecular weight between 9840 and 14600 Da (Collett, 2006; Booth and Attwood, 2000; Cabana et al., 1997).
With increasing F-127 concentration, or at higher temperatures, the entanglement of the polymer chains
increases and the gel becomes more rigid. Pluronics® are favoured for transdermal iontophoresis because: (a)
The non-ionic nature of the surfactant avoids competition with the drug to carry the applied current, and reduces
potential interaction between the polymer and the active (Taveira et al., 2009; Fang et al., 2002; Al-Khalili et al.,
2003; Gupta et al., 1994). (b) F-127 is safe as shown by its wide use in pharmaceutical preparations intended for
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different routes of administration (Collett, 2006). (c) The thermo-reversible properties of the polymer are
advantageous. At 15-30% w/w concentrations in water, F-127 exists in the liquid state at low temperature (< 5°C)
but forms a semi-solid gel upon warming (> 15°C). These unique rheological properties facilitate easy fabrication
and straightforward incorporation with the iontophoretic electrodes; they also enable firm application
conforming to the skin contours and preventing material from running across the skin.

The purpose of this study was to investigate the potential of transdermal iontophoresis as a ranitidine
delivery system for paediatric use. The rate of input of the drug when administered as a continuous intravenous
infusion was used as a guide to determine the target transdermal flux necessary to achieve similar therapeutic
levels. In vitro experiments were conducted to examine the effects of donor vehicle, drug concentration, and
current intensity on the iontophoretic delivery of ranitidine from aqueous solutions. The most appropriate
conditions were adopted in gelled formulations and their performance as potential delivery systems for ranitidine
was evaluated.
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2. Materials and methods

2.1 Chemicals

Ranitidine hydrochloride, silver (Ag) wire (99.99%), silver chloride (AgCl, 99.999%), and Pluronic® F-127
were purchased from Sigma Aldrich (Gillingham, UK). Tris base (a, a, a-Tris-(hydroxymethyl)-methylamine) and
sodium chloride were obtained from Acros (Geel, Belgium). Acetonitrile, hydrochloric acid (HCl), glacial acetic
acid, and triethylamine were provided by Fisher Scientific (Loughborough, UK). All reagents were at least
analytical grade and highly purified deionised water (resistivity > 18.2 MQ.cm, Barnsted Nanopure Diamond™,
Dubuque, IA) was used for the preparation of all solutions.

2.2 Skin

Fresh pig skin was obtained from a local slaughterhouse, cleaned under cold running water, and stored in
the fridge until the following day. Abdominal skin was cut into ~ 20 x 10 cm? pieces, dermatomed (Zimmer™
Electric Dermatome, Dover, Ohio. Nominal thickness 750 um), wrapped individually in Parafilm™, and then kept
in the freezer (-20°C) until use. Immediately prior to the permeation experiment, the skin was thawed at room
temperature for a period of 30 minutes and excess hair was carefully cut away with scissors. The skin was then
mounted onto the diffusion cells without any further treatment.

2.3 lontophoresis set-up

Side-by-side two-compartment diffusion cells (active transport area = 0.78 cm?, volume = 3 ml) were utilised
in all experiments. The skin was mounted between the two chambers with the epidermal side oriented towards
the anode compartment. The receptor chamber always held 154 mM sodium chloride solution (unbuffered, pH
~6) and was magnetically stirred (Multipoint-6 stirrer, Thermo Scientific Variomag, Cole-Parmer, London, UK) at
400 rpm throughout the experiment. Anodal, direct, constant current was delivered using Ag/AgCl electrodes and
a power supply (KEPCO 1000M, Flushing, NY, USA). Hourly samples (0.5 ml) of the receptor phase were
withdrawn and replaced with fresh solution. Separate passive diffusion, control experiments were also performed
with samples taken every 2 hours for 10 hours and two final samples withdrawn at 22 and 24 h. Again each
sample taken was replaced with 0.5 ml fresh solution.

2.3.1 Ranitidine delivery from aqueous solutions

Prior to the start of the transport study, the skin was left for 30 minutes in contact with the donor vehicle
without drug, and 154 mM sodium chloride in the receptor chamber. Both compartments were then refreshed
with new donor (now containing ranitidine) and receptor solutions. Experiments examined donor vehicle, drug
concentration, and current intensity effects on the iontophoretic delivery of ranitidine. Specific conditions
examined are summarised in Table 1.

2.3.2 Ranitidine delivery from gel formulations

Two gel formulations were prepared according to the “cold method” (Schmolka, 1996). Solutions containing
150 mM ranitidine in 5 mM Tris (pH 7) were cooled to ~3-5°C under continuous gentle agitation. F-127 (at 20 and
30% w/w) was then incorporated slowly into the solutions and the resulting formulations were stirred for 2 days
to achieve complete homogeneity.
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Table 1: Experimental conditions performed to characterise ranitidine transdermal delivery from aqueous

solutions.
Donor vehicle [Ranitidine] oH ' Cur'rent -
(mM) intensity (mA)

) Water 5.6 (unbuffered) 5

Donor vehicle - 25 0.3
5mM Tris 7* 5
0.1 5
Current 5mM Tris 50 7* 0.2 4
0.3 5
25 5
Concentration 5mM Tris 50 7* 0.3 5
150 5
Passive diffusion| 5mM Tris 150 7* 0 3

* pH adjusted to 7 with 1M HCI.
** number of replicates

For the permeation experiments, 3.3 grams of each formulation was added to the donor compartment and
constant current (0.3 mA) was delivered for 6 hours. The voltage across each iontophoresis system was
monitored regularly. All experiments were conducted at 22.2 + 0.9°C, and both compartments were covered with
Parafilm to avoid water evaporation.

2.4 Viscosity measurements

The apparent viscosities of the gel formulations were determined using a Bohlin rheometer (Malvern
Instruments, Malvern, UK) equipped with a cone-plate system. The angle of the cone was 4° and the diameter of
the plate was 40 mm. Three specific shear rates were tested (0.1, 1, or 10 1/s) with a gap size set at 150 mm.
Readings were performed at 22.1 £ 0.2°C and gels were allowed to equilibrate on the plate for 5 minutes before
the measurements were made. The viscosities of control formulations (without ranitidine) were also verified and
all measurements were performed in triplicate.

2.5 Conductivity measurements

The conductivities of the gel formulations were measured (T-120 conductivity meter, Metrohm AG, Herisau,
Switzerland; cell reference = 0.85) at 22°C. These were compared to the conductivity of ranitidine in aqueous
solution. All measurements were performed in triplicate.

2.6 Sample analysis

Quantification of ranitidine was performed by high performance liquid chromatography with UV detection
(315 nm). The method was modified from a previous publication (Oo et al., 1995) and used a Jasco HPLC system
comprising: a PU-980 pump with an AS-1595 autosampler, a UV-975 UV-VIS detector, and a HiQ-Sil™ C18 (250 x
4.6 mm, 5um) reverse-phase column (Jasco UK, Ltd., Dunmow, UK) thermostatted at 25°C. The mobile phase (pH
3.8) consisted of a mixture of water, acetonitrile, acetic acid, and triethylamine (85:15:1.5:0.2, respectively in
volume), and was pumped through the system at 1 ml/min.

2.7 Data analysis and statistics

Data analysis and regressions were performed using Graph Pad Prism V.5.00 (Graph Pad Software Inc., La
Jolla, CA, USA). Unless otherwise stated, data are represented as the mean + standard deviation (SD). Transport
fluxes were calculated as the amounts delivered during a permeation period divided by the length of that period.
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Statistical significance was set at p < 0.05. Comparisons made between different sets of data were assessed by
either a two-tailed unpaired t-test (for 2 groups) or a one-way ANOVA (for >2 groups) followed by Tukey’s post-
test. Comparison of ranitidine transdermal delivery from gel formulations relative to aqueous solution was made
with a two-way ANOVA followed by Bonferroni post-tests.

The transference number (T) of ranitidine was computed according to Faraday’s law [6]: T = {(Jiotar®z °F)/1},
where Jiotaris the total flux observed at 6 h, (/) is the current intensity applied, (F) is Faraday’s constant, and z the
absolute value of the valence of the drug ion (~1).
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3. Results and discussion

3.1 Ranitidine delivery from aqueous solutions

The donor concentrations of ranitidine hydrochloride (25-150 mM) provided sufficient chloride ions for the
Ag/AgCl electrochemistry at the anode. The passive diffusion flux of ranitidine from the highest donor
concentration used (150 mM) was only 0.1 + 0.04 nmol/h after 6 hours diffusion and was negligible relative to
that achieved with iontophoresis.

3.1.1 Effect of donor vehicle

The first iontophoresis experiments used a donor solution containing only ranitidine hydrochloride (25 mM)
in water. The pH of this unbuffered solution was around 5.6 and was low enough to ensure almost complete
ionisation (93%) of the more basic group of ranitidine (pK, 8.2). Ranitidine was the only cation present in the
donor compartment, therefore, resulting in the maximum iontophoretic transport possible with the flux reaching
0.61 + 0.08 umol/h after 6 hours of current passage (Figure 1); this corresponds to a transference number of 5.47
(£ 0.67)%.

1.0

=3 pH5.6
0.84 3 pH7 iL

0.6 J‘—E

0.4+

0.2+

Ranitidine flux (*mol/h)

0.0 T T
2 4 6

Time of iontophoresis (h)

Figure 1: Ranitidine iontophoretic transport (mean + SD; applied current = 0.3 mA) as a function of time from
donor solutions containing 25 mM drug at pH 5.6 (in water) and 7 (in 5 mM Tris buffer).

The next donor vehicle examined contained 5 mM Tris buffer with the final pH adjusted to 7 with 1 M HCI.
The iontophoretic fluxes were initially similar to those measured at pH 5.6, but attained a value (0.78 + 0.07
umol/h), after 6 hours of current passage, which was significantly higher (p < 0.05) (Figure 2), and corresponded
to a transference number of 6.95 (+ 0.58)%. Thus, even though the presence of Tris introduced co-ion
competition with ranitidine (~4.6 mM of positively charged Tris at pH 7, pK, 8.1), the higher pH of the donor
solution enhanced the overall electrotransport of the drug (presumably a combination of a greater negative
charge on the skin (pl~4.5 (Marro et al., 2001) and an enhanced electroosmotic flow) (Phipps and Gyory, 1992;
Marro et al., 2001; Santi and Guy, 1996). This result is consistent with previous observations for other cations,
including sodium (Sieg et al., 2004), verapamil (Wearley et al., 1989), and sumatriptan (Patel et al., 2007).

3.1.2 Effect of current intensity

These experiments were designed (a) to confirm that iontophoresis provides a controllable means to deliver
ranitidine, and (b) to determine whether acceptably small current intensities can are able to provide therapeutic
drug doses. While a current density of up to 0.5 mA/cm? is considered tolerable by adult subjects, it is clearly
desirable to use lower levels in children, and especially neonates, to reduce discomfort and improve compliance.
Three current intensities were examined: 0.1, 0.2, and 0.3 mA, (0.13, 0.26, and 0.39 mA/cmZ) at a fixed drug
donor concentration (50 mM).
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Figure 2: lontophoretic delivery of ranitidine (mean + SD) from a 50 mM donor solution (containing 5 mM Tris, pH
7) as a function of time (left) and current intensity (right), with which the flux at 6 hr was highly correlated (I’ =
0.97, p < 0.0001).

As expected, and in agreement with Faraday’s law and several earlier publications (e.g., Green et al., 1992;
Padmanabhan et al.,, 1990; van der Geest et al., 1997; Singh et al.,, 1999)), the current intensity directly
determined the permeation of ranitidine across the skin (Figure 2). The drug’s transference number, calculated
from the slope of the linear dependence of flux at 6 hr against current intensity, was 7.05 (+ 0.33)%; in good
agreement with that determined in the first series of experiments using half the ranitidine concentration in the
donor.

At the lowest current density used (0.13 mA/cm?), the delivery rate of ranitidine was 0.31 (+0.02)
pmol/h.cm?. This flux is sufficient to satisfy the recommended intravenous infusion dose of ranitidine for
neonates (0.09-0.17 umol/kg.h), and for children older than 1 month (0.36-0.71 umol/kg.h) (British National
Formulary for Children, 2008), with patch application areas (anode + cathode) of only 0.6-1.1 cm?/kg for neonates
and 2.3-4.6 cm?/kg for older children. Obviously, with increasing current density, the area required is
proportionately reduced, as illustrated in Figure 3.

150
\8
o -O- Premature (1 kg)
E -& Fullterm (3.5 kg)
5 - -4 1yearold (10 kg)
: -¥-- 12 year old (39 kg)
=
g 50 v
o -
N
£ 104 -
® 4T
o
=30
2 TR
S R o
0 T i I I
o 02 0.3 0.4

Current density (mA/cm?)

Figure 3: Estimated patch areas required to achieve therapeutic input rates of ranitidine, as a function of the
iontophoretic current density applied. 4 age groups are used to illustrate The range of areas necessary in four
illustrative paediatric populations are shown.

3.1.3 Effect of drug concentration

The delivery of ranitidine as a function of donor concentration is shown in Figure 4. No significant impact
was observed and the flux only increased from 0.78 (+0.07) to 0.90 (+0.10) pmol/h despite a six-fold increase in
drug concentration in the donor. This is because the molar fractions of drug used in the three experiments are
not that different (being 0.84, 0.91 and 0.97 for 25, 50 and 150 mM drug, respectively).
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Figure 4: Ranitidine flux (mean * SD) after 6 h of iontophoresis as a function of donor concentration and molar
fraction.

3.2 Ranitidine delivery from gel formulations

Pluronic® F-127 (at 20 or 30% w/w) as used to produce gel formulations containing ranitidine at 150 mM in
5 mM Tris buffer (pH 7). The current intensity employed was 0.3 mA. The highest concentration of drug was
chosen to counteract, as much as possible, any potential effects that gelation of the vehicle might have on the
electrotransport of ranitidine.

3.2.1 Apparent viscosity measurements

Figure 5 displays the apparent viscosity of each gel formulation with and without ranitidine. The values
were unaffected by the presence of the drug, implying that it did not interfere with the
micellisation/entanglement/packing of the F-127. The formulations were semi-solid at 22°C but the viscosity of
that containing 30% w/w polymer was significantly greater than that with less (e.g., at an applied shear rate of 0.1
s, the apparent viscosity of the 20% w/w F-127 was 863 (+67) Pa.s, while that with 30% w/w polymer was 5139
(£302) Pa.s). The 20% gel structure was “soft” relative to the more rigid semi-solid consistency of the 30%
formulation, which would be more appropriate for transdermal applications. The flow curves of the gel
formulations conformed (with r* values of 0.98) to the Ostwald-De Waele power law (Macosko, 1994; Malkin,
1994; Goodwin and Hughes, 2008): n = K*y"”, where n is the apparent viscosity measured at a particular shear
rate (p), K is the flow consistency index, and n is the power-law index.

10000; . & 20%
—g ] <& 20 % control
o Y 30%
:: 1000—§ & A 30 % control
5] X
S |
S 1004 g
‘g 3
g X
Q
Q
< 10- ?

0.1 1 10
Shear rate (y, 1/s)

Figure 5: Apparent viscosities of F-127 gels measured at different shear rates. Regression of the data yielded the
following parameters from the power law relation: (a) for the 20% w/w gel, K and n were, respectively, 119 (+1)
and 0.14 (+0.01) with drug, and 91 (+5) and 0.11 (+0.03) without; (b) for the 30% w/w gel, K and n were,
respectively, 405 (+8) and -0.07 (+0.01) with drug, and 375 (+8) and -0.10 (+0.01) without.
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The n index values of all formulations were below 1 indicating pseudoplastic behaviour; further, the
inverse relationship between the apparent viscosity and the applied shear rate shows that the gels are shear-
thinning fluids. Even at high shear rates, the apparent viscosity of the gels remained in the linear regime of the
power law suggesting that the internal network structure of the formulations was stable.

3.2.2 Conductivity measurements

The conductivity of the high concentration drug formulation without gelation was 7.9 (+0.1) mSi/cm; with
20 and 30% w/w F-127, the conductivities were significantly less (4.3 (£0.03) and 2.9 (0.02) mSi/cm, respectively)
and significantly different from one another. In accordance with Stoke’s law (Kuhn et al., 2008), these
observations suggest that ion mobility (and hence conductivity) and formulation viscosity are inversely related.

3.2.3 Voltage measurements

The voltage across the diffusion cells was monitored throughout the iontophoresis experiments at an
applied current of 0.3 mA and the average results (+SD) are shown in Figure 6. The voltage was highest at the
start of iontophoresis because skin resistance is greatest at this point; it then fell off as ions were driven into the
membrane, which became progressively more conductive. It is apparent, furthermore, that the nature of the
donor formulation also contributed to the total resistance of the iontophoretic circuit, and that this contribution
increased with the viscosity of the gels used (being higher for the 30% w/w polymer than the one containing
20%). However, the 2-fold increase observed would be of trivial significance in terms of the feasibility and
practicality of an in-use iontophoretic device.
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Figure 6: Average voltage applied (mean * SD) across the diffusion cells as a function of time of current
application (0.3 mA) for an aqueous donor solution (0%) and for the two F-127 gels examined (20% and 30%).

3.2.4 Permeation studies

Figure 7 (left panel) shows the passive diffusion profiles of ranitidine from donor formulations containing 0
(control), 20 and 30% w/w of the gelling agent F-127. After 24 hours, cumulative amounts of 18.6 (£6.9), 15.6
(+4.7), and 9.2 (+4.6) nmol/cm?, respectively, had permeated through the skin. At most, therefore, these values
suggest that the gelling agent at its highest concentration only leads to a 50% reduction in the passive skin
permeation rate. From a practical standpoint, this effect is of little consequence, given the much greater delivery
rates achieved with iontophoresis, as shown in Figure 7 (right panel).
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Figure 7: Passive diffusion (left panel) and iontophoretic delivery (right panel) of ranitidine from an aqueous
solution and from two F-127 gel formulations and liquid solution. Data are expressed as mean * SD.

The electrotransport of ranitidine after 6 hr of current passage was 0.90 (x0.10) umol/h from aqueous
solution, and 0.95 (+0.10) and 0.75 (+0.07) umol/h, respectively from the 20% and 30% w/w F-127 gels. Two-way
ANOVA tests on the fluxes from the 4™ hour of iontophoresis indicated that delivery from the 30% polymer
formulation was significantly lower, albeit by only ~20% (i.e., a difference of little practical importance). The
calculated transference numbers of ranitidine from the control, and from the 20 and 30% w/w F-127 formulations
were 8.05 (+0.91), 8.48 (+0.87), and 6.73 (£0.63)%, respectively.

Assuming that the flux rates achieved with the gel formulations are achievable in vivo, the patch areas
required to achieve therapeutic input levels of ranitidine were estimated and are summarised in Table 2. From
these results, it would appear that the F-127 gel formulations may be able to iontophoretically deliver
therapeutically effective fluxes from acceptable patch application areas.

4. Conclusions

Transdermal iontophoresis of ranitidine enhanced its delivery significantly relative to the passive diffusion.
The manipulation of different parameters allowed the drug’s iontophoretic delivery to be optimised so that target
therapeutic levels with both solution and gel formulations might be attained. In particular, a gel formulation
comprising 30% w/w F-127 polymer showed promise, having an appropriate viscosity for transdermal application,
an acceptable electrical conductivity, and achieving the desired iontophoretic efficiency. Specifically, the results
obtained suggest that therapeutic levels of ranitidine in children up to the age of 12 years might be achievable
with a total patch area of only 0.2-1.5 cm?/kg.

Table 2: Calculated iontophoresis gel patch sizes necessary to achieve target systemic levels of ranitidine in
different paediatric populations.

Target input rate | In vitro transdermal rates | Total area of patch
(umol/h.kg)"" achieved? (umol/h.cm?) required (cm?/kg)

Solution: 1.16 (+0.13 01-03

Neonate 0.09-0.17 olution: 1.16 (+0.13) 0.1-0.3

0.2-04

Gel 20%: 1.22 (+0.13)

0.6-1.2

Lmonth=| s 071 0.6-1.2

12 years ' ’ Gel 30%: 0.97 (+0.09) 0'7 1'5

. Typical intravenous infusion rates.

) Fluxes achieved after 6 hour iontophoresis (at a current density of 0.39 mA/cm?, and a donor formulation containing 150
mM drug (pH 7)).
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