33 research outputs found

    Diversity of neglected and underutilized plant species (NUS) in perspective

    Get PDF

    Do smallholder farmer-led seed systems have the capacity to supply good-quality, fungal-free sorghum seed?

    Get PDF
    Local seed systems that are developed, managed and maintained by farmers are a fundamental practice in smallholder crop production, supporting more than 80% of farmers in sub-Saharan Africa and feeding more than 70% of its population. The resilience of such systems is under threat from poverty, climate change, drought, increased pests and diseases, over-promotion of modern crop varieties, change of lifestyles and restrictive seed policies. The system continues to be maligned as having inferior quality, yet few studies support this assertion. This study aims to fll this research gap by evaluating 60 sorghum seed samples collected from smallholder farmers in Uzumba-MarambaPfungwe and Chimanimani districts of Zimbabwe. We investigated the efect of farmer-led seed management practices (e.g. seed acquisition and seed storage practices) on farm-derived sorghum seed quality (moisture, germination and fungal incidences). We found farmers using diverse seed sources and seed storage practices. Seeds were typically of good quality in that their storage moisture content was low, their germination was high, and fungal incidences were low. Seed sourced from local markets, non-governmental organizations and other farmers had germination and moisture standards that met the sorghum certifcation standards in Zimbabwe. However, few samples obtained from the relatives and government failed to meet the germination and/or moisture certifcation standards. We detected low incidences of fungi (Aspergillus favus, Aspergillus niger, Curvularia lunata, Fusarium sp. and Penicillium sp.) in sorghum seed samples tested and in particular Fusarium sp., which is the most economic important fungus in sorghum production. We conclude that farmer-led seed systems have the capacity to supply seeds of good quality and recommend that such systems should be recognized and promoted to meet the ever-evolving needs of smallholder farmers in sub-Saharan Africa

    Repellence of Myzus persicae (Sulzer): evidence of two modes of action of volatiles from selected living aromatic plants.

    No full text
    BACKGROUND Intercropping companion plants (CPs) with horticultural crops could be an eco‐friendly strategy to optimize pest management. In this research, volatile organic compounds (VOCs) emitted by some CPs were investigated for their repellent properties towards the green peach aphid (Myzus persicae Sulzer). The aim of this study was to understand the modes of action involved: direct effects on the aphid and/or indirect effects via the host plant (pepper, Capsicum annuum L.). RESULTS We identified two promising repellent CPs species: the volatile blend from basil (Ocimum basilicum, direct repellent effect) and the mixture of (or previously intercropped) C. annuum plants with Tagetes patula cv. Nana (indirect effect). This effect was cultivar‐dependent and linked to the volatile bouquet. For the 16 compounds present in the O. basilicum or T. patula bouquets tested individually, (E)‐β‐farnesene and eugenol reported good repellent properties against M. persicae. Other compounds were repellent at medium and/or at highest concentrations. Thus, the presence of repellent VOCs in a mixture does not mean that it had a repellent propriety. CONCLUSION We identified two promising repellent CPs species towards M. persicae, with a likely effect of one CPs' VOCs on the host plant repellency and highlighted the specific effectiveness of VOC blends

    Ecotypic differentiation under farmers' selection: Molecular insights into the domestication of Pachyrhizus Rich. ex DC. (Fabaceae) in the Peruvian Andes.

    No full text
    Understanding the distribution of crop genetic diversity in relation to environmental factors can give insights into the eco-evolutionary processes involved in plant domestication. Yam beans (Pachyrhizus Rich. ex DC.) are leguminous crops native to South and Central America that are grown for their tuberous roots but are seed-propagated. Using a landscape genetic approach, we examined correlations between environmental factors and phylogeographic patterns of genetic diversity in Pachyrhizus landrace populations. Molecular analyses based on chloroplast DNA sequencing and a new set of nuclear microsatellite markers revealed two distinct lineages, with strong genetic differentiation between Andean landraces (lineage A) and Amazonian landraces (lineage B). The comparison of different evolutionary scenarios for the diversification history of yam beans in the Andes using approximate Bayesian computation suggests that Pachyrhizus ahipa and Pachyrhizus tuberosus share a progenitor-derivative relationship, with environmental factors playing an important role in driving selection for divergent ecotypes. The new molecular data call for a revision of the taxonomy of Pachyrhizus but are congruent with paleoclimatic and archeological evidence, and suggest that selection for determinate growth was part of ecophysiological adaptations associated with the diversification of the P. tuberosus–P. ahipa complex during the Mid-Holocene

    Seed exchange networks for agrobiodiversity conservation. A review

    No full text
    The circulation of seed among farmers is central to agrobiodiversity conservation and dynamics. Agrobiodiversity, the diversity of agricultural systems from genes to varieties and crop species, from farming methods to landscape composition, is part of humanity�s cultural heritage. Whereas agrobiodiversity conservation has received much attention from researchers and policy makers over the last decades, the methods available to study the role of seed exchange networks in preserving crop biodiversity have only recently begun to be considered. In this overview, we present key concepts, methods, and challenges to better understand seed exchange networks so as to improve the chances that traditional crop varieties (landraces) will be preserved and used sustainably around the world. The available literature suggests that there is insufficient knowledge about the social, cultural, and methodological dimensions of environmental change, including how seed exchange networks will cope with changes in climates, socio-economic factors, and family structures that have supported seed exchange systems to date. Methods available to study the role of seed exchange networks in the preservation and adaptation of crop specific and genetic diversity range from meta-analysis to modelling, from participatory approaches to the development of bio-indicators, from genetic to biogeographical studies, from anthropological and ethnographic research to the use of network theory. We advocate a diversity of approaches, so as to foster the creation of robust and policy-relevant knowledge. Open challenges in the study of the role of seed exchange networks in biodiversity conservation include the development of methods to (i) enhance farmers� participation to decision-making in agro-ecosystems, (ii) integrate ex situ and in situ approaches, (iii) achieve interdisciplinary research collaboration between social and natural scientists, and (iv) use network analysis as a conceptual framework to bridge boundaries among researchers, farmers and policy makers, as well as other stakeholders
    corecore