5 research outputs found

    Cofactor Molecules Maintain Infectious Conformation and Restrict Strain Properties in Purified Prions

    Get PDF
    Prions containing misfolded prion protein (PrP(Sc)) can be formed with cofactor molecules using the technique of serial protein misfolding cyclic amplification. However, it remains unknown whether cofactors materially participate in maintaining prion conformation and infectious properties. Here we show that withdrawal of cofactor molecules during serial propagation of purified recombinant prions caused adaptation of PrP(Sc) structure accompanied by a reduction in specific infectivity of >10(5)-fold, to undetectable levels, despite the ability of adapted “protein-only” PrP(Sc) molecules to self-propagate in vitro. We also report that changing only the cofactor component of a minimal reaction substrate mixture during serial propagation induced major changes in the strain properties of an infectious recombinant prion. Moreover, propagation with only one functional cofactor (phosphatidylethanolamine) induced the conversion of three distinct strains into a single strain with unique infectious properties and PrP(Sc) structure. Taken together, these results indicate that cofactor molecules can regulate the defining features of mammalian prions: PrP(Sc) conformation, infectivity, and strain properties. These findings suggest that cofactor molecules likely are integral components of infectious prions

    Isolation of Phosphatidylethanolamine as a Solitary Cofactor for Prion Formation in the Absence of Nucleic Acids

    Get PDF
    Infectious prions containing the pathogenic conformer of the mammalian prion protein (PrP(Sc)) can be produced de novo from a mixture of the normal conformer (PrP(C)) with RNA and lipid molecules. Recent reconstitution studies indicate that nucleic acids are not required for the propagation of mouse prions in vitro, suggesting the existence of an alternative prion propagation cofactor in brain tissue. However, the identity and functional properties of this unique cofactor are unknown. Here, we show by purification and reconstitution that the molecule responsible for the nuclease-resistant cofactor activity in brain is endogenous phosphatidylethanolamine (PE). Synthetic PE alone facilitates conversion of purified recombinant (rec)PrP substrate into infectious recPrP(Sc) molecules. Other phospholipids, including phosphatidylcholine, phosphatidylserine, phosphatidylinositol, and phosphatidylglycerol, were unable to facilitate recPrP(Sc) formation in the absence of RNA. PE facilitated the propagation of PrP(Sc) molecules derived from all four different animal species tested including mouse, suggesting that unlike RNA, PE is a promiscuous cofactor for PrP(Sc) formation in vitro. Phospholipase treatment abolished the ability of brain homogenate to reconstitute the propagation of both mouse and hamster PrP(Sc) molecules. Our results identify a single endogenous cofactor able to facilitate the formation of prions from multiple species in the absence of nucleic acids or other polyanions

    Cofactor and glycosylation preferences for in vitro prion conversion are predominantly determined by strain conformation.

    No full text
    Prion diseases are caused by the misfolding of a host-encoded glycoprotein, PrPC, into a pathogenic conformer, PrPSc. Infectious prions can exist as different strains, composed of unique conformations of PrPSc that generate strain-specific biological traits, including distinctive patterns of PrPSc accumulation throughout the brain. Prion strains from different animal species display different cofactor and PrPC glycoform preferences to propagate efficiently in vitro, but it is unknown whether these molecular preferences are specified by the amino acid sequence of PrPC substrate or by the conformation of PrPSc seed. To distinguish between these two possibilities, we used bank vole PrPC to propagate both hamster or mouse prions (which have distinct cofactor and glycosylation preferences) with a single, common substrate. We performed reconstituted sPMCA reactions using either (1) phospholipid or RNA cofactor molecules, or (2) di- or un-glycosylated bank vole PrPC substrate. We found that prion strains from either species are capable of propagating efficiently using bank vole PrPC substrates when reactions contained the same PrPC glycoform or cofactor molecule preferred by the PrPSc seed in its host species. Thus, we conclude that it is the conformation of the input PrPSc seed, not the amino acid sequence of the PrPC substrate, that primarily determines species-specific cofactor and glycosylation preferences. These results support the hypothesis that strain-specific patterns of prion neurotropism are generated by selection of differentially distributed cofactors molecules and/or PrPC glycoforms during prion replication
    corecore