64 research outputs found

    Advanced magneto-optical microscopy: Imaging from picoseconds to centimeters - imaging spin waves and temperature distributions (invited)

    Get PDF
    © 2016 Author(s).Recent developments in the observation of magnetic domains and domain walls by wide-field optical microscopy based on the magneto-optical Kerr, Faraday, Voigt, and Gradient effect are reviewed. Emphasis is given to the existence of higher order magneto-optical effects for advanced magnetic imaging. Fundamental concepts and advances in methodology are discussed that allow for imaging of magnetic domains on various length and time scales. Time-resolved imaging of electric field induced domain wall rotation is shown. Visualization of magnetization dynamics down to picosecond temporal resolution for the imaging of spin-waves and magneto-optical multi-effect domain imaging techniques for obtaining vectorial information are demonstrated. Beyond conventional domain imaging, the use of a magneto-optical indicator technique for local temperature sensing is shown

    Gluon Chain Model of the Confining Force

    Full text link
    We develop a picture of the QCD string as a chain of constituent gluons, bound by attractive nearest-neighbor forces which may be treated perturbatively. This picture accounts for both Casimir scaling at large N, and the asymptotic center dependence of the static quark potential. We discuss the relevance, to the gluon-chain picture, of recent three-loop results for the static quark potential. A variational framework is presented for computing the minimal energy and wavefunction of a long gluon chain, which enables us to derive both the logarithmic broadening of the QCD flux tube (``roughening''), and the existence of a Luscher -c/R term in the potential.Comment: 25 pages, 5 figures, latex2

    Spectrum of confining strings in SU(N) gauge theories

    Get PDF
    We study the spectrum of the confining strings in four-dimensional SU(N) gauge theories. We compute, for the SU(4) and SU(6) gauge theories formulated on a lattice, the string tensions sigma_k related to sources with Z_N charge k, using Monte Carlo simulations. Our results are consistent with the sine formula sigma_k/sigma = sin k pi/N / sin pi/N for the ratio between sigma_k and the standard string tension sigma. For the SU(4) and SU(6) cases the accuracy is approximately 1% and 2%, respectively. The sine formula is known to emerge in various realizations of supersymmetric SU(N) gauge theories. On the other hand, our results show deviations from Casimir scaling. We also discuss an analogous behavior exhibited by two-dimensional SU(N) x SU(N) chiral models.Comment: Latex, 34 pages, 10 figures. Results of new SU(4) simulations added. The new data are included in the analysis, leading to improved final estimates for SU(4). Conclusions unchange

    Confining strings in representations with common nn-ality

    Get PDF
    We study the spectrum of confining strings in SU(3) pure gauge theory, by means of lattice Monte Carlo simulations, using torelon operators in different representations of the gauge group. Our results provide direct evidence that the string spectrum is according to predictions based on nn-ality. Torelon correlations in the rank-2 symmetric channel appear to be well reproduced by a two-exponential picture, in which the lowest state is given by the fundamental string σ1=σ\sigma_1=\sigma, the heavier string state is such that the ratio σ2/σ1\sigma_2/\sigma_1 is approximately given by the Casimir ratio Csym/Cf=5/2C_{\rm sym}/C_{\rm f} = 5/2, and the torelon has a much smaller overlap with the lighter fundamental string state.Comment: 7 pages, 2 figure

    Glueballs and k-strings in SU(N) gauge theories : calculations with improved operators

    Full text link
    We test a variety of blocking and smearing algorithms for constructing glueball and string wave-functionals, and find some with much improved overlaps onto the lightest states. We use these algorithms to obtain improved results on the tensions of k-strings in SU(4), SU(6), and SU(8) gauge theories. We emphasise the major systematic errors that still need to be controlled in calculations of heavier k-strings, and perform calculations in SU(4) on an anisotropic lattice in a bid to minimise one of these. All these results point to the k-string tensions lying part-way between the `MQCD' and `Casimir Scaling' conjectures, with the power in 1/N of the leading correction lying in [1,2]. We also obtain some evidence for the presence of quasi-stable strings in calculations that do not use sources, and observe some near-degeneracies between (excited) strings in different representations. We also calculate the lightest glueball masses for N=2, ...,8, and extrapolate to N=infinity, obtaining results compatible with earlier work. We show that the N=infinity factorisation of the Euclidean correlators that are used in such mass calculations does not make the masses any less calculable at large N.Comment: 49 pages, 15 figure

    Confining strings in SU(N) gauge theories

    Get PDF
    We calculate the string tensions of kk-strings in SU(NN) gauge theories in both 3 and 4 dimensions. In D=3+1, we find that the ratio of the k=2k=2 string tension to the k=1k = 1 fundamental string tension is consistent, at the 2σ2 \sigma level, with both the M(-theory)QCD-inspired conjecture and with `Casimir scaling'. In D=2+1 we see a definite deviation from the MQCD formula, as well as a much smaller but still significant deviation from Casimir scaling. We find that in both D=2+1 and D=3+1 the high temperature spatial kk-string tensions also satisfy approximate Casimir scaling. We point out that approximate Casimir scaling arises naturally if the cross-section of the flux tube is nearly independent of the flux carried, and that this will occur in an effective dual superconducting description, if we are in the deep-London limit. We estimate, numerically, the intrinsic width of kk-strings in D=2+1 and indeed find little variation with kk. In addition to the stable kk-strings we investigate some ofthe unstable strings, finding in D=2+1 that they satisfy (approximate) Casimir scaling. We also investigate the basic assumption that confining flux tubes are described by an effective string theory at large distances. We estimate the coefficient of the universal L\"uscher correction from periodic strings that are longer than 1 fermi, and find cL=0.98(4)c_L=0.98(4) in D=3+1 and cL=0.558(19)c_L=0.558(19) in D=2+1. These values are within 2σ2 \sigma of the simple bosonic string values and are inconsistent with other simple effective string theories.Comment: 57 pages, 11 figures. Errors on fits reduced by altering the analysis to a standard one. Conclusions unchanged; note addedchanged. Some typos correcte

    Static forces in d=2+1 SU(N) gauge theories

    Get PDF
    Using a three-level algorithm we perform a high-precision lattice computation of the static force up to 1fm in the 2+1 dimensional SU(5) gauge theory. Discretization errors and the continuum limit are discussed in detail. By comparison with existing SU(2) and SU(3) data it is found that \sigma r_0^2=1.65-\pi/24 holds at an accuracy of 1% for all N>=2, where r_0 is the Sommer reference scale. The effective central charge c_{eff}(r) is obtained and an intermediate distance r_s is defined via the property c_{eff}(r_s)=\pi/24. It separates in a natural way the short-distance regime governed by perturbation theory from the long-distance regime described by an effective string theory. The ratio r_s/r_0 decreases significantly from SU(2) to SU(3) to SU(5), where r_s < r_0. We give a preliminary estimate of its value in the large-N limit. The static force in the smallest representation of N-ality 2, which tends to the k=2 string tension as r->oo, is also computed up to 0.7fm. The deviation from Casimir scaling is positive and grows from 0.1% to 1% in that range.Comment: 25 pages, 8 figures, 11 table

    Glueball Regge Trajectories in (2+1) Dimensional Gauge Theories

    Full text link
    We compute glueball masses for even spins ranging from 0 to 6, in the D=2+1 SU(2) lattice gauge theory. We do so over a wide range of lattice spacings, and this allows a well-controlled extrapolation to the continuum limit. When the resulting spectrum is presented in the form of a Chew-Frautschi plot we find that we can draw a straight Regge trajectory going through the lightest glueballs of spin 0, 2, 4 and 6. The slope of this trajectory is small and turns out to lie between the predictions of the adjoint-string and flux-tube glueball models. The intercept we find, \alpha_0 ~ -1, is much lower than is needed for this leading trajectory to play a `Pomeron-like' role of the kind it is often believed to play in D=3+1. We elaborate the Regge theory of high energy scattering in 2 space dimensions, and we conclude, from the observed low intercept, that high-energy glueball scattering is not dominated by the leading Regge pole exchange, but rather by a more complex singularity structure in the region 0 <= Re{\lambda} <= 1/2 of the complex angular momentum \lambda plane. We show that these conclusions do not change if we go to larger groups, SU(N>2), and indeed to SU(\infty), and we contrast all this with our very preliminary calculations in the D=3+1 SU(3) gauge theory.Comment: 28 pages, 4 figure

    Disruption of working memory and contralateral delay activity by nociceptive stimuli is modulated by task demands

    Get PDF
    Top–down processes allow the selection and prioritization of information by limiting attentional capture by distractors, and these mechanisms depend on task demands such as working memory (WM) load. However, bottom–up processes give salient stimuli a stronger neuronal representation and provoke attentional capture. The aim of this study was to examine the effect of salient nociceptive stimuli on WM while manipulating task demands. Twenty-one healthy participants performed a change detection task during which they had to determine whether 2 successive visual arrays were different or the same. Task demands were modulated by manipulating the WM load (set size included 2 or 4 objects to recall) and by the correspondence between the 2 successive visual arrays (change vs no change). Innocuous stimuli (control) or nociceptive stimuli (distractors) were delivered during the delay period between the 2 visual arrays. Contralateral delay activity and laser-evoked potentials were recorded to examine neural markers of visual WM and nociceptive processes. Nociceptive stimuli decreased WM performance depending on task demands (all P < 0.05). Moreover, compared with control stimuli, nociceptive stimuli abolished the increase in contralateral delay activity amplitude for set size 4 vs set size 2 (P = 0.04). Consistent with these results, laser-evoked potential amplitude was not decreased when task demands were high (P = 0.5). These findings indicate that WM may shield cognition from nociceptive stimuli, but nociceptive stimuli disrupt WM and alter task performance when cognitive resources become insufficient to process all task-relevant information. Corresponding author. Address: Department of Anatomy, Université du Québec à Trois-Rivières, 3351 Blvd des Forges, C.P. 500, Trois-Rivières, QC, Canada G9A 5H7. Tel.: 819-376-5011, Ext.: 3998; fax: 819-376-5204. E-mail address: [email protected] (M. Piché). Sponsorships or competing interests that may be relevant to content are disclosed at the end of this article. Received July 06, 2021 Received in revised form September 22, 2021 Accepted October 08, 2021 © 2022 International Association for the Study of Pai
    corecore