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Confining strings in representations with
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Abstract

We study the spectrum of confining strings in SU(3) pure gauge
theory, by means of lattice Monte Carlo simulations, using torelon
operators in different representations of the gauge group. Our results
provide direct evidence that the string spectrum is according to pre-
dictions based on n-ality. Torelon correlations in the rank-2 symmetric
channel appear to be well reproduced by a two-exponential picture,
in which the lowest state is given by the fundamental string σ1 = σ,
the heavier string state is such that the ratio σ2/σ1 is approximately
given by the Casimir ratio Csym/Cf = 5/2, and the torelon has a much
smaller overlap with the lighter fundamental string state.

http://arXiv.org/abs/hep-lat/0308012v1


The spectrum of confining strings in 4-d SU(N) gauge theories has been
much investigated recently. Several numerical studies in the context of a
lattice formulation of the theory have appeared in the literature, providing
results for color sources associated with representations higher than the fun-
damental, see e.g. Refs. [1, 2, 3, 4, 5, 6]. General arguments show that the
string tension must depend only on the n-ality, k = mod(l, N), of a repre-
sentation built out of the (anti-)symmetrized tensor product of l copies of
the fundamental representation. The confining string with n-ality k is usu-
ally called k-string, and σk is the corresponding string tension. Using charge
conjugation, σk = σN−k. As a consequence, SU(3) has only one independent
string tension determining the large distance behavior of the potential for
k 6= 0. One must consider larger values of N to look for distinct k-strings.
Lattice results for N = 4, 5, 6 [6, 5] show a nontrivial spectrum for the k-
strings. In particular the data of Ref. [6], obtained using color sources in the
antisymmetric representations of rank k, turn out to be well reproduced by
the sine formula

σk

σ
≈ sin(kπ/N)

sin(π/N)
, (1)

(σ ≡ σ1) within their errors. The sine formula has been suggested by several
theoretical works, especially in the context of supersymmetric theories, see
e.g. Refs. [7, 8] and references therein.

On the other hand, numerical results for different representations with
the same n-ality apparently contradict the picture that n-ality is what really
matters. For example, in the SU(3) case, Monte Carlo data for the Wilson
loops for several representations [2, 3] show apparently area laws up to rather
large distances, approximately 1 fm, also for representations with zero n-ality,
and the extracted string tensions turn out to be consistent with the so-called
Casimir scaling [1]. In the lattice study of Ref. [5, 6], considering larger val-
ues of N , the k-string tensions were extracted from the torelon masses, i.e.
from the exponential decay of correlations of characters of Polyakov lines.
In Ref. [6], while the antisymmetric representations provided rather clean
measurements of σk reproducing the sine formula, the numerical results for
the symmetric representations suggested different values of the correspond-
ing string tensions. For example, in the case of rank 2, σsym/σ ∼> 2, which is
approximately the value suggested by Casimir scaling or by the propagation
of two noninteracting fundamental strings. These results that apparently
contradict n-ality have been recently discussed in Ref. [9]. They have been
explained by arguing that standard color sources, such as Wilson loops and
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Polyakov lines, associated with representations different from the antisym-
metric ones have very small overlap with the stable k-string states, being
suppressed by powers of 1/N2 in the large-N limit, and in some cases also
exponentially. Since N = 3 is supposed to be already large, these arguments
may explain why the predictions of n-ality have not been directly observed
in the numerical simulations, which are limited in accuracy. Moreover, the
situation worsens in the case of larger N .

Motivated by this recent work, we decided to return on this issue in the
context of the 4-d SU(3) gauge theory. Performing Monte Carlo simulations
of the SU(3) gauge theory in its Wilson lattice formulation, we measure
correlators of Polyakov lines in the representations of rank 1 (fundamental)
and 2 of the SU(3) group, in order to check whether their large-distance
behaviors, and therefore the values of the corresponding string tensions, are
consistent with n-ality.

In our numerical study we use a method based on torelon correlators [10].
The string tensions are extracted from the large-time behavior of “wall-wall”
correlators of Polyakov loops in spatial directions, closed through periodic
boundary conditions (see e.g. Refs.[10, 5]):

Gr(t) =
∑

x1,x2

〈χr[P (0, 0; 0)] χr[P (x1, x2; t)]〉, (2)

where P (x1, x2; t) = Πx3
U3(x1, x2, x3; t). U(x; t) are the usual link variables,

and χr is the character of the representation r: χf [P ] = Tr P for the funda-
mental representation, while the two representations of rank 2 (antisymmetric
and symmetric, both with n-ality k = 2) have χasym[P ] = 1

2
((Tr P )2−Tr P 2),

χsym[P ] = 1
2
((Tr P )2 + Tr P 2), respectively. Note that, since for SU(3)

χasym[U ] = χf [U ], the correlators in the k = 1 fundamental and k = 2
antisymmetric representations are identical. We have also studied the ad-
joint representation (n-ality k = 0), for which: χadj[P ] = |TrP |2 − 1. In this
case, one should consider the connected correlator, since 〈χadj[P ]〉 6= 0.

The correlators (2) decay exponentially as exp(−mkt), where mk is the
mass of the lightest state in the corresponding representation. Actually, on
a finite lattice with periodic boundary conditions we have Gr(t) ∝ cosh(t −
T/2), whete T is the temporal size. For a k-loop of size L, the k-string
tension is obtained using the relation [10]

mk = σkL − π

3L
. (3)
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The last term in Eq. (3) is conjectured to be a universal correction, and it is
related to the universal critical behavior of the flux excitations described by
a free bosonic string [11].

We present results obtained at β = 5.9 and for two asymmetric lattices
123×24 and 163×24, allowing us to compare the results using Polyakov lines
with different length, i.e. L = 12, 16. Using our data for the fundamental
string tension, see below, and the standard value

√
σ = 440 MeV, L = 12, 16

correspond to approximately 1.5 and 2 fm, respectively. In our simulations we
upgraded the SU(3) variables by alternating microcanonical over-relaxation
and heat bath steps, typically in a 4:1 ratio. More details on the algorithm
can be found in Ref. [6]. We collected rather high statistics, ≈ 16M sweeps
(considering a sweep as the upgrading of all links of the lattice independently
of the algorithm) for L = 12 and ≈ 7M sweeps for L = 16. Measurements
were taken every 20 sweeps. In order to improve the efficiency of the mea-
surements we used smearing and blocking procedures (see e.g. Refs. [12]) to
construct new operators with a better overlap with the lightest string state.
We constructed new super-links using three smearing, and a few blocking
steps, according to the value of L, i.e. two for L = 12 and four for L = 16.
These super-links were used to compute improved Polyakov lines. Our im-
plementation of smearing and blocking is as follows [6]: Smearing replaces
every spatial link on the lattice according to:

Uk(x) 7→ P






Uk(x) + αs

∑

±(j 6=k)

Uj(x)Uk(x + ĵ)U †
j (x + k̂)







(4)

where P indicates the projection onto SU(N) and the sum only runs on
spatial directions. Similarly, blocking replaces each spatial link with a super-
link of length 2a:

Uk(x) 7→ P






Uk(x)Uk(x + k̂) + αf

∑

±(j 6=k)

Uj(x)Uk(x + ĵ)Uk(x + ĵ + k̂))U †
j (x + 2k̂)







(5)
The blocking procedure can then be iterated n times to produce super-links
of length 2na. The coefficients αs and αf can be adjusted to optimise the
efficiency of the procedure. We constructed new super-links using αs = αf =
0.5 .

In Figs. 1 and 2 we show the wall-wall correlators as a function of the
distance t in the cases of fundamental and symmetric representations, from
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Figure 1: Correlator data for the fundamental (circles) and rank-2 symmetric
(squares) representations, with L = 16, as a function of the temporal distance
t. The top solid line is a hyperbolic cosine fit to data with t ≥ 3, leading to
an estimate of m1 ; the bottom solid line is a hyperbolic cosine with the same

exponent, which is well supported by the symmetric representation data for
t ≥ 3. The dashed line represents a fit using the two-exponent Ansatz (6).
Data from the rank-2 symmetric representation at one less blocking step is
shown in diamonds.

the runs with L = 16 and L = 12 respectively. The data for the correla-
tor in the fundamental representation allow us to accurately determine the
fundamental string tension, and the two lattices provide consistent results
using Eq. (3), i.e. σ = 0.0664(5) and σ = 0.0668(3) respectively from the
L = 16 and L = 12 runs (obtained by fitting results starting from distances
t = 3, 4, respectively). On the other hand, such an agreement is not observed
in the case of the symmetric representation. However, the L = 16 data for
the symmetric correlator shows a clear evidence that its asymptotic behavior
is controlled by the fundamental string; indeed, fitting the data for t ≥ 3 we
obtain σsym = 0.070(4), in agreement with n-ality. Although data at small t,
t < 3, show a clear contamination by heavier states, in the symmetric rep-
resentation case the overlap with the fundamental string state of the source
operator, obtained by performing four blocking steps after smearing, appears
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Figure 2: Correlator data for the fundamental (circles) and symmetric
(squares) representations, with L = 12, as a function of the temporal distance
t. Solid lines are exponential fits to data with t ≥ 3, leading to markedly
different values of mk .

to be sufficient to show the actual asymptotic behavior before the signal dis-
appears within the error. This is not observed in the L = 16 data using the
source operator with three blocking steps (one less) and in the L = 12 data
(where two blocking steps are employed). Up to the distances that we can
observe before the signals die off into the noise, the correlators appear to be
dominated by the propagation of a much heavier state, which would suggest
σsym ≈ 0.16, whose corresponding ratio σsym/σ ≈ 2.4 is rather close to the
Casimir ratio of the two representations, i.e. 5/2.

A simple interpretation of the behaviour of torelon correlations is provided
by a picture based on two propagating states; indeed, the numerical results
suggest:

Gsym(t) ≃ c1e
−m1t + c2e

−m2t (6)

where mi = σiL − π/(3L). Due to n-ality, σ1 = σ. The string tension of the
first excited string state is σ2, and the overlap with the states satisfy c1 ≪ c2.
The data on the smaller lattice L = 12 already suggests that the ratio σ2/σ
should be approximately equal to the Casimir ratio. As shown in Fig. 1, the
Ansatz (6) fits well the L = 16 data at four blocking steps for t ≥ 1, with
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σ2/σ ≃ 2.2 and c1/c2 ≃ 0.12. Assuming a mild dependence of ci on L, and
given the smallness of c1, the signal from the fundamental string should only
be visible for large enough t:

t ≃ ln(c2/c1)

(σ2 − σ1) L
(7)

Clearly, for an acceptable signal-to-noise ratio, t must not grow excessively,
and the above equation requires a sufficiently large spatial size L ; this is
consistent with the results from the lattice sizes we use.

According to the large-N arguments of Ref. [9], the ratio c1/c2 should be
suppressed at least by a power of 1/N2. This would make the observation of
the asymptotic k = 2 string state, using sources in the symmetric represen-
tation, much harder for larger N , thereby explaining the results for N = 4, 6
of Ref. [6].

In conclusion, the results that we have presented provide direct evidence
that the spectrum of confining strings is according to predictions based on
n-ality. Torelon correlations in the rank-2 symmetric channel appear to be
well reproduced by a two-exponential picture, in which the lowest state is
given by the fundamental string σ1 = σ, the heavier string state is such that
the ratio σ2/σ1 is approximately given by the Casimir ratio Csym/Cf = 5/2,
and the torelon has a much smaller overlap with the lighter fundamental
string state.

In the case of the adjoint representation, since its n-ality is zero, the cor-
responding mass of the exponential decay in the connected correlator should
not depend on L, but it should be related to the propagation of gluelumps.
Actually, since the gluelumps have a limited physical size, by increasing L
we expect a smaller and smaller overlap of the adjoint Polyakov lines with
the lowest states; this makes the evidence for the so-called adjoint string
breaking1 very difficult when using the method applied here, requiring a pro-
hibitive amount of statistics. Indeed, both the L = 16 and L = 12 data
seem to correspond to the propagation of a string state with σadj ≈ 0.145,
and therefore σadj/σ ≈ 2.1, which is again rather close to the corresponding
Casimir ratio 9/4.
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