21 research outputs found

    A potential new tool for the toolbox: assessing gene drives for eradicating invasive rodent populations

    Get PDF
    Invasive rodents have significant negative impacts on island biodiversity. All but the smallest of rodent eradications currently rely on island-wide rodenticide applications. Although significant advances have been made in mitigating unintended impacts, rodent eradication on inhabited islands remains extremely challenging. Current tools restrict eradication eff orts to fewer than 15% of islands with critically endangered or endangered species threatened by invasive rodents. The Genetic Biocontrol of Invasive Rodents partnership is an interdisciplinary collaboration to develop and evaluate gene drive technology for eradicating invasive rodent populations on islands. Technological approaches currently being investigated include the production of multiple strains of Mus musculus with a modifi ed form of the native t-complex, or a CRISPR gene drive, carrying genes or mechanisms that determine sex. These systems have the potential to skew the sex ratio of off spring to approach 100% single-sex, which could result in population collapse. One goal proposed is to test the ability of constructs to spread and increase in frequency in M. musculus populations in biosecure, captive settings and undertake modelling to inform development and potential deployment of these systems. Structured ecologically-based risk assessments are proposed, along with social and cultural engagement to assess the acceptability of releasing a gene drive system. Work will be guided by an external ethics advisory board. Partners are from three countries with significant regulatory capacity (USA, Australia, New Zealand). Thus, we will seek data sharing agreements so that results from experiments may be used within all three countries and treat regulatory requirements as a minimum. Species-specific, scalable, and socially acceptable new eradication tools could produce substantial biodiversity benefits not possible with current technologies. Gene drive innovation may provide such a tool for invasive species management and be potentially transformative and worthy of exploring in an inclusive, responsible, and ethical manner

    Guiding Ethical Principles in Engineering Biology Research

    Get PDF
    Engineering biology is being applied toward solving or mitigating some of the greatest challenges facing society. As with many other rapidly advancing technologies, the development of these powerful tools must be considered in the context of ethical uses for personal, societal, and/or environmental advancement. Researchers have a responsibility to consider the diverse outcomes that may result from the knowledge and innovation they contribute to the field. Together, we developed a Statement of Ethics in Engineering Biology Research to guide researchers as they incorporate the consideration of long-term ethical implications of their work into every phase of the research lifecycle. Herein, we present and contextualize this Statement of Ethics and its six guiding principles. Our goal is to facilitate ongoing reflection and collaboration among technical researchers, social scientists, policy makers, and other stakeholders to support best outcomes in engineering biology innovation and development

    The role of citizen science in addressing grand challenges in food and agriculture research

    Get PDF
    The power of citizen science to contribute to both science and society is gaining increased recognition, particularly in physics and biology. Although there is a long history of public engagement in agriculture and food science, the term ‘citizen science’ has rarely been applied to these efforts. Similarly, in the emerging field of citizen science, most new citizen science projects do not focus on food or agriculture. Here, we convened thought leaders from a broad range of fields related to citizen science, agriculture, and food science to highlight key opportunities for bridging these overlapping yet disconnected communities/fields and identify ways to leverage their respective strengths. Specifically, we show that (i) citizen science projects are addressing many grand challenges facing our food systems, as outlined by the United States National Institute of Food and Agriculture, as well as broader Sustainable Development Goals set by the United Nations Development Programme, (ii) there exist emerging opportunities and unique challenges for citizen science in agriculture/food research, and (iii) the greatest opportunities for the development of citizen science projects in agriculture and food science will be gained by using the existing infrastructure and tools of Extension programmes and through the engagement of urban communities. Further, we argue there is no better time to foster greater collaboration between these fields given the trend of shrinking Extension programmes, the increasing need to apply innovative solutions to address rising demands on agricultural systems, and the exponential growth of the field of citizen science.This working group was partially funded from the NCSU Plant Sciences Initiative, College of Agriculture and Life Sciences ‘Big Ideas’ grant, National Science Foundation grant to R.R.D. (NSF no. 1319293), and a United States Department of Food and Agriculture-National Institute of Food and Agriculture grant to S.F.R., USDA-NIFA Post Doctoral Fellowships grant no. 2017-67012-26999.http://rspb.royalsocietypublishing.orghj2018Forestry and Agricultural Biotechnology Institute (FABI

    The role of citizen science in addressing grand challenges in food and agriculture research

    Get PDF
    The power of citizen science to contribute to both science and society is gaining increased recognition, particularly in physics and biology. Although there is a long history of public engagement in agriculture and food science, the term ‘citizen science’ has rarely been applied to these efforts. Similarly, in the emerging field of citizen science, most new citizen science projects do not focus on food or agriculture. Here, we convened thought leaders from a broad range of fields related to citizen science, agriculture, and food science to highlight key opportunities for bridging these overlapping yet disconnected communities/fields and identify ways to leverage their respective strengths. Specifically, we show that (i) citizen science projects are addressing many grand challenges facing our food systems, as outlined by the United States National Institute of Food and Agriculture, as well as broader Sustainable Development Goals set by the United Nations Development Programme, (ii) there exist emerging opportunities and unique challenges for citizen science in agriculture/food research, and (iii) the greatest opportunities for the development of citizen science projects in agriculture and food science will be gained by using the existing infrastructure and tools of Extension programmes and through the engagement of urban communities. Further, we argue there is no better time to foster greater collaboration between these fields given the trend of shrinking Extension programmes, the increasing need to apply innovative solutions to address rising demands on agricultural systems, and the exponential growth of the field of citizen science.This working group was partially funded from the NCSU Plant Sciences Initiative, College of Agriculture and Life Sciences ‘Big Ideas’ grant, National Science Foundation grant to R.R.D. (NSF no. 1319293), and a United States Department of Food and Agriculture-National Institute of Food and Agriculture grant to S.F.R., USDA-NIFA Post Doctoral Fellowships grant no. 2017-67012-26999.http://rspb.royalsocietypublishing.orghj2018Forestry and Agricultural Biotechnology Institute (FABI

    Core commitments for field trials of gene drive organisms

    Get PDF
    This is the author accepted manuscript. The final version is available from the American Association for the Advancement of Science via the DOI in this record Gene drive organisms (GDOs), whose genomes have been genetically engineered to spread a desired allele through a population, have the potential to transform the way societies address a wide range of daunting public health and environmental challenges. The development, testing, and release of GDOs, however, are complex and often controversial. A key challenge is to clarify the appropriate roles of developers and others actively engaged in work with GDOs in decision-making processes, and, in particular, how to establish partnerships with relevant authorities and other stakeholders. Several members of the gene drive community previously proposed safeguards for laboratory experiments with GDOs (1) that, in the absence of national or international guidelines, were considered essential for responsible laboratory work to proceed. Now, with GDO development advancing in laboratories (2–5), we envision similar safeguards for the potential next step: ecologically and/or genetically confined field trials to further assess the performance of GDOs. A GDO's propensity to spread necessitates well-developed criteria for field trials to assess its potential impacts (6). We, as a multidisciplinary group of GDO developers, ecologists, conservation biologists, and experts in social science, ethics, and policy, outline commitments below that we deem critical for responsible conduct of a field trial and to ensure that these technologies, if they are introduced, serve the public interest.British AcademyBritish Academ

    A potential new tool for the toolbox: assessing gene drives for eradicating invasive rodent populations

    Get PDF
    Invasive rodents have significant negative impacts on island biodiversity. All but the smallest of rodent eradications currently rely on island-wide rodenticide applications. Although significant advances have been made in mitigating unintended impacts, rodent eradication on inhabited islands remains extremely challenging. Current tools restrict eradication eff orts to fewer than 15% of islands with critically endangered or endangered species threatened by invasive rodents. The Genetic Biocontrol of Invasive Rodents partnership is an interdisciplinary collaboration to develop and evaluate gene drive technology for eradicating invasive rodent populations on islands. Technological approaches currently being investigated include the production of multiple strains of Mus musculus with a modifi ed form of the native t-complex, or a CRISPR gene drive, carrying genes or mechanisms that determine sex. These systems have the potential to skew the sex ratio of off spring to approach 100% single-sex, which could result in population collapse. One goal proposed is to test the ability of constructs to spread and increase in frequency in M. musculus populations in biosecure, captive settings and undertake modelling to inform development and potential deployment of these systems. Structured ecologically-based risk assessments are proposed, along with social and cultural engagement to assess the acceptability of releasing a gene drive system. Work will be guided by an external ethics advisory board. Partners are from three countries with significant regulatory capacity (USA, Australia, New Zealand). Thus, we will seek data sharing agreements so that results from experiments may be used within all three countries and treat regulatory requirements as a minimum. Species-specific, scalable, and socially acceptable new eradication tools could produce substantial biodiversity benefits not possible with current technologies. Gene drive innovation may provide such a tool for invasive species management and be potentially transformative and worthy of exploring in an inclusive, responsible, and ethical manner

    A roadmap for gene drives: using institutional analysis and development to frame research needs and governance in a systems context

    No full text
    The deployment of gene drives is emerging as an alternative for protecting endangered species, controlling agricultural pests, and reducing vector-borne diseases. This paper reports on a workshop held in February 2016 to explore the complex intersection of political, economic, ethical, and ecological risk issues associated with gene drives. Workshop participants were encouraged to use systems thinking and mapping to describe the connections among social, policy, economic, and ecological variables as they intersect within governance systems. In this paper, we analyze the workshop transcripts and maps using the Institutional Analysis and Development (IAD) framework to categorize variables associated with gene drive governance and account for the complexities of socio-ecological systems. We discuss how the IAD framework can be used in the future to test hypotheses about how features of governance systems might lead to certain outcomes and inform the design of research programs, public engagement, and anticipatory governance of gene drives. Keywords: Gene drive; governance; risk; systems; IAD; genetic engineerin
    corecore