164 research outputs found

    Incentives to Innovate in a Cournot Oligopoly

    Full text link

    Double gamers—can modified natural regulators of higher plants act as antagonists against phytopathogens? The case of jasmonic acid derivatives

    Get PDF
    As key players in biotic stress response of plants, jasmonic acid (JA) and its derivatives cover a specific and prominent role in pathogens-mediated signaling and hence are promising candidates for a sustainable management of phytopathogenic fungi. Recently, JA directed antimicrobial effects on plant pathogens has been suggested, supporting the theory of oxylipins as double gamers in plant-pathogen interaction. Based on these premises, six derivatives (dihydrojasmone and cis-jasmone, two thiosemicarbazonic derivatives and their corresponding complexes with copper) have been evaluated against 13 fungal species affecting various economically important herbaceous and woody crops, such as cereals, grapes and horticultural crops: Phaeoacremonium minimum, Neofusicoccum parvum, Phaeomoniella chlamydospora, Fomitiporia mediterranea, Fusarium poae, F. culmorum, F. graminearum, F. oxysporum f. sp. lactucae, F. sporotrichioides, Aspergillus flavus, Rhizoctonia solani, Sclerotinia spp. and Verticillium dahliae. The biological activity of these compounds was assessed in terms of growth inhibition and, for the two mycotoxigenic species A. flavus and F. sporotrichioides, also in terms of toxin containment. As expected, the inhibitory effect of molecules greatly varied amongst both genera and species; cis-jasmone thiosemicarbazone in particular has shown the wider range of effectiveness. However, our results show that thiosemicarbazones derivatives are more effective than the parent ketones in limiting fungal growth and mycotoxins production, supporting possible applications for the control of pathogenic fungi

    Quest for barley canopy architecture genes in the hortillus population and whealbi germplasm collection

    Get PDF
    Barley grains are predominantly used for animal feed and malting, and breeding traditionally focused on increase of grain yield by partitioning biomass from straw to grains. The increasing demand for renewable energy sources makes straw, and specially barley straw characterized by the largest content of carbohydrates among the cereals, a valuable product for its potential conversion into biofuels and other products. The BarPLUS project aims at finding genes, alleles and candidate lines related to barley canopy architecture and photosynthesis, to maximize barley biomass and yield (https://barplus.wordpress.com/). In this framework, our research group focuses on identifying genes and alleles controlling tillering, leaf size and leaf angle traits in barley by exploiting both induced and natural allelic variation. Using a forward genetics approach, we screened the HorTILLUS population (Szurman-Zubrzycka et al., 2018) under both field and controlled conditions, identifying 5 mutants with increased tillering and/or erect leaves. After crossing with four reference cultivars, pools of F2 wild-type and mutant plants were selected to map and identify the underlying genes by exome sequencing (Mascher et al., 2014). In parallel, TILLING of the HorTILLUS population identified four lines carrying mutations in the LBO (Lateral branching oxidoreductase) gene involved in tiller number. In order to explore also natural genetic variation, we are taking advantage of the \u2018WHEALBI\u2019 germplasm collection, which includes 403 exome sequenced diverse accessions (BustosKorts et al., 2019): a field trial on a subset of 240 lines (Fiorenzuola d\u2019Arda, Italy) allowed us to conduct a preliminary genome wide association study based on high-throughput phenotyping for leaf angle (PocketPlant3D smartphone app) and quantitative image-analysis for leaf size. Results will be compared with those from a greenhouse experiment on the same 240 accessions to analyze a wide range of morphological traits and identify associated markers and genomic regions
    • …
    corecore