32 research outputs found

    Noradrenaline and Parkinson's Disease

    Get PDF
    Parkinson's disease (PD) is characterized by the degeneration of dopamine (DA) neurons in the substantia nigra pars compacta, and motor symptoms including bradykinesia, rigidity, and tremor at rest. These symptoms are exhibited when striatal dopamine concentration has decreased by around 70%. In addition to motor deficits, PD is also characterized by the non-motor symptoms. However, depletion of DA alone in animal models has failed to simultaneously elicit both the motor and non-motor deficits of PD, possibly because the disease is a multi-system disorder that features a profound loss in other neurotransmitter systems. There is growing evidence that additional loss of noradrenaline (NA) neurons of the locus coeruleus, the principal source of NA in the brain, could be involved in the clinical expression of motor as well as in non-motor deficits. In the present review, we analyze the latest evidence for the implication of NA in the pathophysiology of PD obtained from animal models of parkinsonism and from parkinsonian patients. Recent studies have shown that NA depletion alone, or combined with DA depletion, results in motor as well as in non-motor dysfunctions. In addition, by using selective agonists and antagonists of noradrenaline alpha receptors we, and others, have shown that α2 receptors are implicated in the control of motor activity and that α2 receptor antagonists can improve PD motor symptoms as well as l-Dopa-induced dyskinesia. In this review we argue that the loss of NA neurons in PD has an impact on all PD symptoms and that the addition of NAergic agents to dopaminergic medication could be beneficial in the treatment of the disease

    Involvement of monoaminergic systems in the pathophysiology of Parkinson’s disease : behavioural and electrophysiological studies in the rat

    No full text
    Depuis les années 60, la maladie de Parkinson est considérée comme une conséquence de la perte des neurones dopaminergiques de la substance noire pars compacta. Cependant, dans les modèles animaux de cette pathologie, la perte dopaminergique seule ne reproduit pas de façon simultanée les symptômes moteurs et non moteurs observés chez les patients. De plus en plus d’études suggèrent l’implication des systèmes noradrénergique et sérotoninergique à la fois dans la manifestation des symptômes mais aussi dans les effets secondaires de la L-Dopa et de la stimulation à haute fréquence (SHF) du noyau sous thalamique (NST). Le travail de cette thèse s’inscrit dans ce champ de recherche visant une meilleure compréhension de la physiopathologie et la thérapie de la maladie de Parkinson.Dans un premier temps, nous nous sommes intéressés au rôle respectif des trois monoamines dans la manifestation des symptômes moteurs et non moteurs ainsi que dans l’activité pathologique de trois structures majeures des ganglions de la base, le NST, la pars reticulata de la substance noire et le globus pallidus. L’ensemble de nos résultats démontre que la perturbation des trois systèmes monoaminergiques joue un rôle important à la fois dans la manifestation des troubles moteurs et non moteurs mais aussi dans l’induction de l’activité électrique pathologique des neurones au sein des ganglions de la base. Dans un second temps, nous avons étudié l’efficacité des traitements antiparkinsoniens sur les troubles moteurs et non-moteurs induits par les différentes déplétions monoaminergiques. Nos résultats montrent que quand la déplétion dopaminergique est associée à la déplétion d’une autre monoamine la SHF du NST présente une efficacité moins importante que celle lors d’une déplétion en dopamine seule. Ceci permet d’expliquer le manque d’efficacité de ce traitement chez certains patients.Enfin, comme peu d’études se sont intéressées au rôle de la noradrénaline dans la modulation de l’activité neuronale au sein des ganglions de la base, nous avons étudié les effets d’agents noradrénergiques injectés localement dans le NST sur le comportement moteur et sur l’activité électrique des neurones du NST. Nos résultats montrent que la modulation noradrénergique au niveau du NST ne dépendait pas de l’innervation dopaminergique au sein des ganglions de la base. De plus, nous avons pu mettre en évidence que les récepteurs alpha1 modulent la fréquence de décharge, tandis que les récepteurs alpha2 jouent un rôle important dans la genèse de l’activité en bouffée des neurones du NST ce qui pourrait être á l’origine des déficits moteurs.Les résultats des travaux de cette thèse ont donc permis d’apporter de nouvelles évidences sur l’implication des trois systèmes monoaminergiques dans la physiopathologie des symptômes moteurs et non moteurs, dans l’activité pathologique des ganglions de la base ainsi que dans l’efficacité des traitements antiparkinsoniens. De plus, nous avons pu montrer que les récepteurs noradrénergiques alpha sont impliqués dans le contrôle de l’activité des neurones du NST et par conséquent dans le contrôle moteur.The loss of dopamine (DA) nigro-striatal neurons has been the pathophysiological focus of the devastating conditions of Parkinson’s disease, but depletion of DA alone in animal models has failed to simultaneously elicit both the motor and non-motor deficits of PD. There is growing evidence that additional loss of locus coeruleus noradrenaline (NA) and dorsal raphe serotonin (5-HT) neurons in PD could be involved in the clinical expression of many of the observed deficits but also on the efficiency and on the side effects of antiparkinsonian treatments, L-Dopa and High Frequency Stimulation (HFS) of the subthalamic nucleus (STN).First, we focused on the respective role of DA, NA and 5-HT systems on motor and non-motor deficits and on the pathological activity of three basal ganglia nuclei, STN, substantia nigra pars reticulata and globus pallidus. Results of the present study bring new insights into the combined roles of the three monoaminergic systems in the motor and non motor symptoms of PD and also into the pathological activity of basal ganglia nuclei.Second, we studied the involvement of DA, NA and 5-HT depletions on the efficiency of L-Dopa and HFS of STN. Our results show that when DA depletion is combined with another monoamine depletion, STN HFS is less efficient compared to the situation when DA is depleted alone. These data provide a clear explanation on the lack of efficacy of this treatment in some operated parkinsonian patients.Finally, as few studies focused on NAergic modulation of basal ganglia, we studied the effects of NAergic agents locally injected into the STN on motor behavior and also on STN neuronal activity. We show that alpha 1 NAergic receptors are implicated in the modulation of firing rate and that alpha 2 receptors play an important role in the emergence of burst activity, which could be at the origin of motor deficits.Results of this thesis provide new evidences on the involvement of the three monoaminergic systems in motor and non motor symptoms and also in the efficiency of antiparkinsonian treatments. Moreover, we show that NAergic alpha receptors are implicated in the control of STN neuronal activity and consequently in the motor control

    Involvement of monoaminergic systems in the pathophysiology of Parkinson’s disease : behavioural and electrophysiological studies in the rat

    No full text
    Depuis les années 60, la maladie de Parkinson est considérée comme une conséquence de la perte des neurones dopaminergiques de la substance noire pars compacta. Cependant, dans les modèles animaux de cette pathologie, la perte dopaminergique seule ne reproduit pas de façon simultanée les symptômes moteurs et non moteurs observés chez les patients. De plus en plus d’études suggèrent l’implication des systèmes noradrénergique et sérotoninergique à la fois dans la manifestation des symptômes mais aussi dans les effets secondaires de la L-Dopa et de la stimulation à haute fréquence (SHF) du noyau sous thalamique (NST). Le travail de cette thèse s’inscrit dans ce champ de recherche visant une meilleure compréhension de la physiopathologie et la thérapie de la maladie de Parkinson.Dans un premier temps, nous nous sommes intéressés au rôle respectif des trois monoamines dans la manifestation des symptômes moteurs et non moteurs ainsi que dans l’activité pathologique de trois structures majeures des ganglions de la base, le NST, la pars reticulata de la substance noire et le globus pallidus. L’ensemble de nos résultats démontre que la perturbation des trois systèmes monoaminergiques joue un rôle important à la fois dans la manifestation des troubles moteurs et non moteurs mais aussi dans l’induction de l’activité électrique pathologique des neurones au sein des ganglions de la base. Dans un second temps, nous avons étudié l’efficacité des traitements antiparkinsoniens sur les troubles moteurs et non-moteurs induits par les différentes déplétions monoaminergiques. Nos résultats montrent que quand la déplétion dopaminergique est associée à la déplétion d’une autre monoamine la SHF du NST présente une efficacité moins importante que celle lors d’une déplétion en dopamine seule. Ceci permet d’expliquer le manque d’efficacité de ce traitement chez certains patients.Enfin, comme peu d’études se sont intéressées au rôle de la noradrénaline dans la modulation de l’activité neuronale au sein des ganglions de la base, nous avons étudié les effets d’agents noradrénergiques injectés localement dans le NST sur le comportement moteur et sur l’activité électrique des neurones du NST. Nos résultats montrent que la modulation noradrénergique au niveau du NST ne dépendait pas de l’innervation dopaminergique au sein des ganglions de la base. De plus, nous avons pu mettre en évidence que les récepteurs alpha1 modulent la fréquence de décharge, tandis que les récepteurs alpha2 jouent un rôle important dans la genèse de l’activité en bouffée des neurones du NST ce qui pourrait être á l’origine des déficits moteurs.Les résultats des travaux de cette thèse ont donc permis d’apporter de nouvelles évidences sur l’implication des trois systèmes monoaminergiques dans la physiopathologie des symptômes moteurs et non moteurs, dans l’activité pathologique des ganglions de la base ainsi que dans l’efficacité des traitements antiparkinsoniens. De plus, nous avons pu montrer que les récepteurs noradrénergiques alpha sont impliqués dans le contrôle de l’activité des neurones du NST et par conséquent dans le contrôle moteur.The loss of dopamine (DA) nigro-striatal neurons has been the pathophysiological focus of the devastating conditions of Parkinson’s disease, but depletion of DA alone in animal models has failed to simultaneously elicit both the motor and non-motor deficits of PD. There is growing evidence that additional loss of locus coeruleus noradrenaline (NA) and dorsal raphe serotonin (5-HT) neurons in PD could be involved in the clinical expression of many of the observed deficits but also on the efficiency and on the side effects of antiparkinsonian treatments, L-Dopa and High Frequency Stimulation (HFS) of the subthalamic nucleus (STN).First, we focused on the respective role of DA, NA and 5-HT systems on motor and non-motor deficits and on the pathological activity of three basal ganglia nuclei, STN, substantia nigra pars reticulata and globus pallidus. Results of the present study bring new insights into the combined roles of the three monoaminergic systems in the motor and non motor symptoms of PD and also into the pathological activity of basal ganglia nuclei.Second, we studied the involvement of DA, NA and 5-HT depletions on the efficiency of L-Dopa and HFS of STN. Our results show that when DA depletion is combined with another monoamine depletion, STN HFS is less efficient compared to the situation when DA is depleted alone. These data provide a clear explanation on the lack of efficacy of this treatment in some operated parkinsonian patients.Finally, as few studies focused on NAergic modulation of basal ganglia, we studied the effects of NAergic agents locally injected into the STN on motor behavior and also on STN neuronal activity. We show that alpha 1 NAergic receptors are implicated in the modulation of firing rate and that alpha 2 receptors play an important role in the emergence of burst activity, which could be at the origin of motor deficits.Results of this thesis provide new evidences on the involvement of the three monoaminergic systems in motor and non motor symptoms and also in the efficiency of antiparkinsonian treatments. Moreover, we show that NAergic alpha receptors are implicated in the control of STN neuronal activity and consequently in the motor control

    Dopaminergic control of the globus pallidus through activation of D2 receptors and its impact on the electrical activity of subthalamic nucleus and substantia nigra reticulata neurons.

    No full text
    The globus pallidus (GP) receives dopaminergic afferents from the pars compacta of substantia nigra and several studies suggested that dopamine exerts its action in the GP through presynaptic D2 receptors (D2Rs). However, the impact of dopamine in GP on the pallido-subthalamic and pallido-nigral neurotransmission is not known. Here, we investigated the role of dopamine, through activation of D2Rs, in the modulation of GP neuronal activity and its impact on the electrical activity of subthalamic nucleus (STN) and substantia nigra reticulata (SNr) neurons. Extracellular recordings combined with local intracerebral microinjection of drugs were done in male Sprague-Dawley rats under urethane anesthesia. We showed that dopamine, when injected locally, increased the firing rate of the majority of neurons in the GP. This increase of the firing rate was mimicked by quinpirole, a D2R agonist, and prevented by sulpiride, a D2R antagonist. In parallel, the injection of dopamine, as well as quinpirole, in the GP reduced the firing rate of majority of STN and SNr neurons. However, neither dopamine nor quinpirole changed the tonic discharge pattern of GP, STN and SNr neurons. Our results are the first to demonstrate that dopamine through activation of D2Rs located in the GP plays an important role in the modulation of GP-STN and GP-SNr neurotransmission and consequently controls STN and SNr neuronal firing. Moreover, we provide evidence that dopamine modulate the firing rate but not the pattern of GP neurons, which in turn control the firing rate, but not the pattern of STN and SNr neurons

    Lead-Induced Atypical Parkinsonism in Rats: Behavioral, Electrophysiological, and Neurochemical Evidence for a Role of Noradrenaline Depletion

    No full text
    Background: Lead neurotoxicity is a major health problem known as a risk factor for neurodegenerative diseases, including the manifestation of parkinsonism-like disorder. While lead is known to preferentially accumulate in basal ganglia, the mechanisms underlying behavioral disorders remain unknown. Here, we investigated the neurophysiological and biochemical correlates of motor deficits induced by sub-chronic injections of lead.Methods: Sprague Dawely rats were exposed to sub-chronic injections of lead (10 mg/kg, i.p.) or to a single i.p. injection of 50 mg/kg N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP-4), a drug known to induce selective depletion of noradrenaline. Rats were submitted to a battery of behavioral tests, including the open field for locomotor activity and rotarod for motor coordination. Electrophysiological recordings were carried out in three major basal ganglia nuclei, the subthalamic nucleus (STN), globus pallidus (GP), and substantia nigra pars reticulata (SNr). At the end of experiments, post-mortem tissue level of the three monoamines (dopamine, noradrenaline, and serotonin) and their metabolites has been determined using HPLC.Results: Lead intoxication significantly impaired exploratory and locomotor activity as well as motor coordination. It resulted in a significant reduction in the level of noradrenaline in the cortex and dopamine and its metabolites, DOPAC, and HVA, in the striatum. The tissue level of serotonin and its metabolite 5-HIAA was not affected in the two structures. Similarly, DSP-4, which induced a selective depletion of noradrenaline, significantly decreased exploratory, and locomotor activity as well as motor coordination. L-DOPA treatment did not improve motor deficits induced by lead and DSP-4 in the two animal groups. Electrophysiological recordings showed that both lead and DSP-4 did not change the firing rate but resulted in a switch from the regular normal firing to irregular and bursty discharge patterns of STN neurons. Neither lead nor DSP-4 treatments changed the firing rate and the pattern of GP and SNr neurons.Conclusions: Our findings provide evidence that lead represents a risk factor for inducing parkinsonism-like deficits. As the motor deficits induced by lead were not improved by L-DOPA, we suggest that the deficits may be due to the depletion of noradrenaline and the parallel disorganization of STN neuronal activity

    Manganese-induced atypical parkinsonism is associated with altered Basal Ganglia activity and changes in tissue levels of monoamines in the rat.

    No full text
    Manganese neurotoxicity is associated with motor and cognitive disturbances known as Manganism. However, the mechanisms underlying these deficits remain unknown. Here we investigated the effects of manganese intoxication on motor and non-motor parkinsonian-like deficits such as locomotor activity, motor coordination, anxiety and "depressive-like" behaviors. Then, we studied the impact of this intoxication on the neuronal activity, the globus pallidus (GP) and subthalamic nucleus (STN). At the end of experiments, post-mortem tissue level of the three monoamines (dopamine, norepinephrine and serotonin) has been determined. The experiments were carried out in adult Sprague-Dawley rats, daily treated with MnCl2 (10 mg/kg/, i.p.) for 5 weeks. We show that manganese progressively reduced locomotor activity as well as motor coordination in parallel with the manifestation of anxiety and "depressive-like" behaviors. Electrophysiological results show that, while majority of GP and STN neurons discharged regularly in controls, manganese increased the number of GP and STN neurons discharging irregularly and/or with bursts. Biochemical results show that manganese significantly decreased tissue levels of norepinephrine and serotonin with increased metabolism of dopamine in the striatum. Our data provide evidence that manganese intoxication is associated with impaired neurotransmission of monoaminergic systems, which is at the origin of changes in basal ganglia neuronal activity and the manifestation of motor and non-motor deficits similar to those observed in atypical Parkinsonism

    Coefficient of variations of GP, STN and SNr neurons before and after dopamine or quinpirole injection into the GP.

    No full text
    <p>Coefficient of variations of GP, STN and SNr neurons before and after dopamine or quinpirole injection into the GP.</p

    Intrapallidal microinjection of quinpirole predominantly increased the firing rate of GP neurons in a dose-dependent manner without changing the tonic firing pattern.

    No full text
    <p>(A) Histograms showing the dose response effects of quinpirole (Quin 0.2, 0.4 and 0.8 ÎĽg) on the firing rate (A1) and the coefficient of variation of the interspike intervals (A2) of GP neurons. ***<i>p</i><0.001. (B-D) A representative example of GP neuron before (BC) and after (CD) microinjection of quinpirole (Quin) into the GP showing an increase of its firing rate with spike train (B1D1), firing rate histogram (C), raster display of random segments of recording (B2D2), insterspike interval histogram (B3D3) and density histogram (B4D4) of the same GP neuron. (E) Circular plot representing the percentage of GP neurons showing an increase, a decrease or no change of their firing rate after the local injection of quinpirole. (F-H) A representative example of GP neuron before (FG) and after (GH) microinjection of quinpirole (Quin) into the GP showing a decrease of its firing rate with spike train (F1H1), firing rate histogram (G), raster display of random segments of recording (F2H2), insterspike interval histogram (F3H3) and density histogram (F4H4) of the same GP neuron.</p

    Firing rates of GP, STN and SNr neurons before and after dopamine or quinpirole injection into the GP.

    No full text
    <p>Firing rates of GP, STN and SNr neurons before and after dopamine or quinpirole injection into the GP.</p
    corecore