43 research outputs found

    Combined magnetic and chemical patterning for neural architectures

    Full text link
    In vitro investigation of neural architectures requires cell positioning. For that purpose, micro-magnets have been developed on silicon substrates and combined with chemical patterning to attract cells to adhesive sites and keep them there during incubation. We have shown that the use of micro-magnets allows to achieve a high filling factor (~90%) of defined adhesive sites in neural networks and prevents migration of cells during growth. This approach has great potential for neural interfacing by providing accurate and time-stable coupling with integrated nanodevices

    Transport et détection quantiques dans un nanofil supraconducteur réalisé par microscopie à force atomique

    No full text
    This work deals with realizations and measurements of superconducting quantum devices. For patterming these devices, we use a technique of near field lithography : the local oxydation of a thin metallic layer with an atomic force microscope (AFM). We apply this technique to Nb and NbN ultra-thin films (2-10 nm) epitaxaly grown on sapphire substrates. The ultimate resolution that we obtain is of 10nm. It enables us to carry out crystalline nanowires whose section is nanometric (100nm2) and homogeneous at long distances( 40”m). In preliminary studies, we characterize the crystalline quality of films and we measure their electrical properties at the lowest temperatures. These studies are performed for several film?s thicknesses and allow the analyse of the superconducting-insulating transition in ultra-thin films according to the disorder measured in the layers. We determine the dissipative modes of the superconducting nanowires at very low temperatures. In the hot-spot regime, we show that the nanowires allow fast detection of single photons. The detectors are sensitive to one photon in the visible and two photons in infrared. These superconducting devices could be used like photons counters and then be useful for implementing a quantum cryptography and making safe transmission of the informations.Ce travail porte sur la fabrication et la mesure de dĂ©tecteurs quantiques supraconducteurs. Pour nano-structurer ces dispositifs, nous utilisons une technique de lithographie en champ proche : l'anodisation locale sous la pointe d'un microscope Ă  force atomique (AFM). Nous appliquons cette technique Ă  des films ultra-minces (2-10 nm) Ă  base de niobium (Nb, NbN) Ă©pitaxiĂ©s sur des substrats de saphir. La rĂ©solution ultime que nous obtenons est de 10nm. Elle nous permet de rĂ©aliser des nanofils cristallins dont la section est nanomĂ©trique (100nm2) et homogĂšne sur de grandes distances ( 40”m). Nous caractĂ©risons en amont la qualitĂ© cristalline des films et mesurons leurs propriĂ©tĂ©s Ă©lectriques jusqu'aux plus basses tempĂ©ratures. Ces expertises sont menĂ©es en parallĂšle, sur des films d'Ă©paisseur variable et nous permettent l'analyse de la transition supraconducteur-isolant dans les films ultra-minces en fonction du dĂ©sordre mesurĂ© dans les couches. Nous dĂ©terminons les rĂ©gimes dissipatifs des nanofils supraconducteurs Ă  trĂšs basses tempĂ©ratures. Dans le rĂ©gime de point chaud, nous montrons que les nanofils permettent la dĂ©tection rapide d'un photon unique. Les dĂ©tecteurs sont sensibles au photon unique dans le visible et Ă  deux photons dans l'infrarouge. Ces dĂ©tecteurs supraconducteurs ont une rĂ©solution temporelle inĂ©galĂ©e par les dĂ©tecteurs semiconducteurs. Ils peuvent ĂȘtre utilisĂ©s comme des compteurs de photons et ĂȘtre utiles Ă  l'implĂ©mentation d'une cryptographie classique et quantique pour la transmission d'information sĂ©curisĂ©e

    Transport et détection quantiques dans un nanofil supraconducteur réalisé par microscopie à force atomique

    No full text
    Ce travail porte sur la fabrication et la mesure de dĂ©tecteurs quantiques supraconducteurs. Pour nano-structurer ces dispositifs, nous utilisons une technique de lithographie en champ proche : l'anodisation locale sous la pointe d'un microscope Ă  force atomique (AFM). Nous appliquons cette technique Ă  des films ultra-minces (2-10 nm) Ă  base de niobium (Nb, NbN) Ă©pitaxiĂ©s sur des substrats de saphir. La rĂ©solution ultime que nous obtenons est de 10nm. Elle nous permet de rĂ©aliser des nanofils cristallins dont la section est nanomĂ©trique (100nm2) et homogĂšne sur de grandes distances ( 40 m). Nous caractĂ©risons en amont la qualitĂ© cristalline des films et mesurons leurs propriĂ©tĂ©s Ă©lectriques jusqu'aux plus basses tempĂ©ratures. Ces expertises sont menĂ©es en parallĂšle, sur des films d'Ă©paisseur variable et nous permettent l'analyse de la transition supraconducteur-isolant dans les films ultra-minces en fonction du dĂ©sordre mesurĂ© dans les couches. Nous dĂ©terminons les rĂ©gimes dissipatifs des nanofils supraconducteurs Ă  trĂšs basses tempĂ©ratures. Dans le rĂ©gime de point chaud, nous montrons que les nanofils permettent la dĂ©tection rapide d'un photon unique. Les dĂ©tecteurs sont sensibles au photon unique dans le visible et Ă  deux photons dans l'infrarouge. Ces dĂ©tecteurs supraconducteurs ont une rĂ©solution temporelle inĂ©galĂ©e par les dĂ©tecteurs semiconducteurs. Ils peuvent ĂȘtre utilisĂ©s comme des compteurs de photons et ĂȘtre utiles Ă  l'implĂ©mentation d'une cryptographie classique et quantique pour la transmission d'information sĂ©curisĂ©e.This work deals with realizations and measurements of superconducting quantum devices. For patterming these devices, we use a technique of near field lithography : the local oxydation of a thin metallic layer with an atomic force microscope (AFM). We apply this technique to Nb and NbN ultra-thin films (2-10 nm) epitaxaly grown on sapphire substrates. The ultimate resolution that we obtain is of 10nm. It enables us to carry out crystalline nanowires whose section is nanometric (100nm2) and homogeneous at long distances( 40 m). In preliminary studies, we characterize the crystalline quality of films and we measure their electrical properties at the lowest temperatures. These studies are performed for several film?s thicknesses and allow the analyse of the superconducting-insulating transition in ultra-thin films according to the disorder measured in the layers. We determine the dissipative modes of the superconducting nanowires at very low temperatures. In the hot-spot regime, we show that the nanowires allow fast detection of single photons. The detectors are sensitive to one photon in the visible and two photons in infrared. These superconducting devices could be used like photons counters and then be useful for implementing a quantum cryptography and making safe transmission of the informations.GRENOBLE1-BU Sciences (384212103) / SudocSudocFranceF

    Luminescent Yb3+,Er3+-Doped α-La(IO3)3 Nanocrystals for Neuronal Network Bio-Imaging and Nanothermometry

    No full text
    International audienceDual-light emitting Yb 3+ ,Er 3+-codoped α-La(IO3)3 nanocrystals, known to exhibit both second harmonic signal and photoluminescence (PL), are evaluated as optical nanoprobes and thermal sensors using both conventional microscopes and a more sophisticated micro-PL setup. When loaded in cortical and hippocampal neurons for a few hours at a concentration of 0.01 mg/mL, a visible PL signal arising from the nanocrystals can be clearly detected using an epifluorescent conventional microscope, enabling to localize the nanocrystals along the stained neurons and to record PL variation with temperature of 0.5% K −1. No signal of cytotoxicity, associated with the presence of nanocrystals, is observed during the few hours of the experiment. Alternatively, a micro-PL setup can be used to discriminate the different PL lines. From ratiometric PL measurements, a relative thermal sensitivity of 1.2% K −1 was measured

    Portrait of intense communications within microfluidic neural networks

    No full text
    In vitro model networks could provide cellular models of physiological relevance to reproduce and investigate the basic function of neural circuits on a chip in the laboratory. Several tools and methods have been developed since the past decade to build neural networks on a chip; among them, microfluidic circuits appear to be a highly promising approach. One of the numerous advantages of this approach is that it preserves stable somatic and axonal compartments over time due to physical barriers that prevent the soma from exploring undesired areas and guide neurites along defined pathways. As a result, neuron compartments can be identified and isolated, and their interconnectivity can be modulated to build a topological neural network (NN). Here, we have assessed the extent to which the confinement imposed by the microfluidic environment can impact cell development and shape NN activity. Toward that aim, microelectrode arrays have enabled the monitoring of the short- and mid-term evolution of neuron activation over the culture period at specific locations in organized (microfluidic) and random (control) networks. In particular, we have assessed the spike and burst rate, as well as the correlations between the extracted spike trains over the first stages of maturation. This study enabled us to observe intense neurite communications that would have been weaker and more delayed within random networks; the spiking rate, burst and correlations being reinforced over time in terms of number and amplitude, exceeding the electrophysiological features of standard cultures. Beyond the enhanced detection efficiency that was expected from the microfluidic channels, the confinement of cells seems to reinforce neural communications and cell development throughout the network

    Portrait of intense communications within microfluidic neural networks

    No full text
    Abstract In vitro model networks could provide cellular models of physiological relevance to reproduce and investigate the basic function of neural circuits on a chip in the laboratory. Several tools and methods have been developed since the past decade to build neural networks on a chip; among them, microfluidic circuits appear to be a highly promising approach. One of the numerous advantages of this approach is that it preserves stable somatic and axonal compartments over time due to physical barriers that prevent the soma from exploring undesired areas and guide neurites along defined pathways. As a result, neuron compartments can be identified and isolated, and their interconnectivity can be modulated to build a topological neural network (NN). Here, we have assessed the extent to which the confinement imposed by the microfluidic environment can impact cell development and shape NN activity. Toward that aim, microelectrode arrays have enabled the monitoring of the short- and mid-term evolution of neuron activation over the culture period at specific locations in organized (microfluidic) and random (control) networks. In particular, we have assessed the spike and burst rate, as well as the correlations between the extracted spike trains over the first stages of maturation. This study enabled us to observe intense neurite communications that would have been weaker and more delayed within random networks; the spiking rate, burst and correlations being reinforced over time in terms of number and amplitude, exceeding the electrophysiological features of standard cultures. Beyond the enhanced detection efficiency that was expected from the microfluidic channels, the confinement of cells seems to reinforce neural communications and cell development throughout the network
    corecore