6 research outputs found

    Calibration of the EIT instrument for the SOHO mission

    Full text link
    peer reviewedOptical characteristics in the wavelength range 15 - 75 nm of the EUV imaging telescope to be launched soon on the SOHO mission are discussed. Bandpasses and photometric sensitivity of the multilayered optics telescope have been measured by a dedicated synchrotron light source at Orsay, France

    MAGRITTE / SPECTRE : the Solar Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatory

    Full text link
    The Solar Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatory will characterize the dynamical evolution of the solar plasma from the chromosphere to the corona, and will follow the connection of plasma dynamics with magnetic activity throughout the solar atmosphere. The AIA consists of 7 high resolution imaging telescopes in the following spectral bandpasses: 1215 \x8F Ly-a, 304 \x8F He II, 629 \x8F OV, 465 \x8F Ne VII, 195 \x8F Fe XII (includes Fe XXIV), 284 \x8F Fe XV, and 335 \x8F Fe XVI. The telescopes are grouped by instrumental approach: the Magritte Filtergraphs (R. Magritte, famous 20th Century Belgian Surrealistic Artist), five multilayer EUV channels with bandpasses ranging from 195 to 1216 \x8F, and the SPECTRE Spectroheliograph with one soft-EUV channel at OV 629 \x8F. They will be simultaneously operated with a 10-second imaging cadence. These two instruments, the electronic boxes and two redundant Guide Telescopes (GT) constitute the AIA suite. They will be mounted and coaligned on a dedicated common optical bench. The GTs will provide pointing jitter information to the whole SHARPP assembly. This poster presents the selected technologies, the different challenges, the trade-offs to be made in phase A, and the model philosophy. From a scientific viewpoint, the unique combination high temporal and spatial resolutions with the simultaneous multi-channel capability will allow Magritte/SPECTRE to explore new domains in the dynamics of the solar atmosphere, in particular the fast small-scale phenomena. We show how the spectral channels of the different instruments were derived to fulfill the AIA scientific objectives, and we outline how this imager array will address key science issues, like the transition region and coronal waves or flare precursors, in coordination with other SDO experiments. We finally describe the real-time solar monitoring products that will be made available for space-weather forecasting applications

    MAGRITTE: an instrument suite for the solar atmospheric imaging assembly (AIA) aboard the Solar Dynamics Observatory

    Full text link
    The Solar Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatory will characterize the dynamical evolution of the solar plasma from the chromosphere to the corona, and will follow the connection of plasma dynamics with magnetic activity throughout the solar atmosphere. The AIA consists of 7 high-resolution imaging telescopes in the following spectral bandpasses: 1215Ã…. Ly-a, 304 Ã… He II, 629 Ã… OV, 465 Ã… Ne VII, 195 Ã… Fe XII (includes Fe XXIV), 284 Ã… Fe XV, and 335 Ã… Fe XVI. The telescopes are grouped by instrumental approach: the MAGRITTE Filtergraphs (R. MAGRITTE, famous 20th Century Belgian Surrealistic Artist), five multilayer EUV channels with bandpasses ranging from 195 to 1216 Ã…, and the SPECTRE Spectroheliograph with one soft-EUV channel at OV 629 Ã…. They will be simultaneously operated with a 10-second imaging cadence. These two instruments, the electronic boxes and two redundant Guide Telescopes (GT) constitute the AIA suite. They will be mounted and coaligned on a dedicated common optical bench. The GTs will provide pointing jitter information to the whole SHARPP assembly. This paper presents the selected technologies, the different challenges, the trade-offs to be made in phase A, and the model philosophy. From a scientific viewpoint, the unique combination high temporal and spatial resolutions with the simultaneous multi-channel capability will allow MAGRITTE / SPECTRE to explore new domains in the dynamics of the solar atmosphere, in particular the fast small-scale phenomena. We show how the spectral channels of the different instruments were derived to fulfill the AIA scientific objectives, and we outline how this imager array will address key science issues, like the transition region and coronal waves or flare precursors, in coordination with other SDO experiments. We finally describe the real-time solar monitoring products that will be made available for space-weather forecasting applications

    First Results from EIT

    Full text link
    peer reviewedThe Extreme-UV Imaging telescope has already produced more than 15000 wide-field images of the corona and transition region, on the disk and up to 1.5R_o above the limb, with a pixel size of 2.6\arcsec. By using four different emission lines, it provides the global temperature distribution in the quiet corona, in the range 0.5 to 3*E(6) K. Its excellent sensitivity and wide dynamic range allow unprecedented views of low emission features, even inside coronal holes. Those so-called ``quiet'' regions actually display a wide range of dynamical phenomena, in particular at small spatial scales and at time scales going down to only a few seconds, as revealed by all EIT time sequences of full- or partial-field images. The initial results presented here demonstrate the importance of this wide-field imaging experiment for a good coordination between SOHO and ground-based solar telescopes, as well as for science planning
    corecore