30 research outputs found

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time, and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space. While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes, vast areas of the tropics remain understudied. In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity, but it remains among the least known forests in America and is often underrepresented in biodiversity databases. To worsen this situation, human-induced modifications may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge, it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Questions sur la monophylie du taxon Pachycondyla Smith, 1858 : approche cytogénétique sur le sous-genre Pachycondyla sensu Emery, 1901 (Hymenoptera, Formicidae, Ponerinae)

    No full text
    Questions on the monophyly of the taxon Pachycondyla Smith, 1858 : a cytogenetic approach on the sub-genus Pachycondyla sensu Emery, 1901 (Hymenoptera, Formicidae, Ponerinae). The metaphasic chromosomes of three species of Neotropical Ants of the genus are analyzed for the first time. All three have a singularly high number of chromosomes, which are all extremely small. This characteristic is convergent with what is known on similar studies that have been carried oui on Indian-Australian species of Pachycondyla of the ex-genus Bothroponera. Our data suggest that the terricolous neotropical Pachycondyla (Pachycondyla) sensu Emery, 1901, that have a great number chromosomes of small size and mainly acrocentric, represent an evolutive lineage independent of the other ants of the genus.Les chromosomes métaphasiques de trois espèces de Fourmis néotropicales du genre Pachycondyla (Formicidae : Ponerinae) sont étudiés pour la première fois. Toutes trois possèdent un nombre singulièrement élevé de chromosomes, tous extrêmement petits. Cette caractéristique est convergente avec ce qui est connu d'études similaires réalisées sur des espèces indo-australiennes de Pachycondyla appartenant à l'ancien genre Bothroponera. Nos données suggèrent que les espèces néotropicales terricoles de Pachycondyla (Pachycondyla) sensu Emery, 1901, qui possèdent un grand nombre de chromosomes de petite taille et majoritairement acrocentriques, représentent une lignée évolutive indépendante des autres fourmis du genre.Mariano C.S.F., Pompolo S.G., Lacau Sébastien, Delabie J.H.C. Questions sur la monophylie du taxon Pachycondyla Smith, 1858 : approche cytogénétique sur le sous-genre Pachycondyla sensu Emery, 1901 (Hymenoptera, Formicidae, Ponerinae). In: Bulletin de la Société entomologique de France, volume 111 (3), septembre 2006. pp. 299-304

    Questions sur la monophylie du taxon Pachycondyla Smith, 1858 : approche cytogénétique sur le sous-genre Pachycondyla sensu Emery, 1901 (Hymenoptera, Formicidae, Ponerinae)

    No full text
    Questions on the monophyly of the taxon Pachycondyla Smith, 1858 : a cytogenetic approach on the sub-genus Pachycondyla sensu Emery, 1901 (Hymenoptera, Formicidae, Ponerinae). The metaphasic chromosomes of three species of Neotropical Ants of the genus are analyzed for the first time. All three have a singularly high number of chromosomes, which are all extremely small. This characteristic is convergent with what is known on similar studies that have been carried oui on Indian-Australian species of Pachycondyla of the ex-genus Bothroponera. Our data suggest that the terricolous neotropical Pachycondyla (Pachycondyla) sensu Emery, 1901, that have a great number chromosomes of small size and mainly acrocentric, represent an evolutive lineage independent of the other ants of the genus.Les chromosomes métaphasiques de trois espèces de Fourmis néotropicales du genre Pachycondyla (Formicidae : Ponerinae) sont étudiés pour la première fois. Toutes trois possèdent un nombre singulièrement élevé de chromosomes, tous extrêmement petits. Cette caractéristique est convergente avec ce qui est connu d'études similaires réalisées sur des espèces indo-australiennes de Pachycondyla appartenant à l'ancien genre Bothroponera. Nos données suggèrent que les espèces néotropicales terricoles de Pachycondyla (Pachycondyla) sensu Emery, 1901, qui possèdent un grand nombre de chromosomes de petite taille et majoritairement acrocentriques, représentent une lignée évolutive indépendante des autres fourmis du genre.Mariano C.S.F., Pompolo S.G., Lacau Sébastien, Delabie J.H.C. Questions sur la monophylie du taxon Pachycondyla Smith, 1858 : approche cytogénétique sur le sous-genre Pachycondyla sensu Emery, 1901 (Hymenoptera, Formicidae, Ponerinae). In: Bulletin de la Société entomologique de France, volume 111 (3), septembre 2006. pp. 299-304

    Competition, Resources And The Ant (hymenoptera: Formicidae) Mosaic: A Comparison Of Upper And Lower Canopy

    No full text
    A canopy crane was used to assess ant defensive behaviour and recruitment at baits in the Parque Natural Metropolitano, Panama. Sardine-honey baits were set within a grid of 25 paired upper and lower canopy points, for which coordinates and height were recorded. We tested the hypothesis that interactions in the ant mosaic become stronger as one moves from the lower to the upper canopy. We sampled 23 ant species, with Azteca (A. trigona, A. velox, Azteca nr. chartifex, and A. snellingi) being by far the most abundant genus, recruiting to 63% of baits and excluding all other ant genera. Camponotus (Myrmobrachys) sp. 1 also showed a statistically significant exclusion of other ant species over 95% of its occurrence. Cephalotes umbraculatus and Dolichoderus bispinosus had exclusive occurrences in smaller areas. Exclusion between dominant or subdominant species was more frequent in the upper than lower canopy. Permeable borders and territory-free spaces are important for ant species diversity, and were more frequent in the lower canopy. Here, a combination of more costly patrolling conditions and less profitable resources, such as extra-floral nectaries and trophobionts, may be the most likely cause of this pattern. The findings presented here could account for the viewpoint of some that ant mosaics exist in plantations but not necessarily in tropical forest canopies.18113120Adams, E.S., Territory defense by the ant Azteca trigona: Maintenance of an arboreal ant mosaic (1994) Oecologia, 97 (2), pp. 202-208Basset, Y., Aberlenc, H.P., Delvare, G., Abundance and stratification of foliage arthropods in a lowland rain forest of Cameroon (1992) Ecological Entomology, 17 (4), pp. 310-318Beugnon, G., Dejean, A., Adaptative properties of the chemical trail system of the African weaver ant Oecophylla longinoda, LATREILLE (Hymenoptera: Formicinae) (1992) Insectes Sociaux, 39, pp. 341-346Blüthgen, N., Feldhaar, H., Food and shelter: How resources influence ant ecology (2009) Ant Ecology, pp. 115-136. , LACH, L., PARR, C. L. & ABBOTT, K.L. (Eds.) Oxford University Press, OxfordBluthgen, N., Stork, N.E., Ant mosaics in a tropical rainforest in Australia and elsewhere: A critical review (2007) Austral Ecology, 32 (1), pp. 93-104. , DOI 10.1111/j.1442-9993.2007.01744.xBluthgen, N., Stork, N.E., Fiedler, K., Bottom-up control and co-occurrence in complex communities: Honeydew and nectar determine a rainforest ant mosaic (2004) Oikos, 106 (2), pp. 344-358. , DOI 10.1111/j.0030-1299.2004.12687.xBlüthgen, N., Verhaagh, M., Goitía, W., Jaffé, K., Morawetz, W., Barthlott, W., How plants shape the ant community in the Amazonian rainforest canopy: The key role of extrafloral nectaries and homopteran honeydew (2000) Oecologia, 125, pp. 229-240Bolton, B., (2012) An Online Catalog of the Ants of the World, , http://www.antcat.org, retrieved on 15 December 2010Campos, R.I., Vasconcelos, H.L., Ribeiro, S.P., Neves, F.S., Soares, J.P., Relationship between tree size and insect assemblages associated with Anadenanthera macrocarpa (2006) Ecography, 29 (3), pp. 442-450. , DOI 10.1111/j.2006.0906-7590.04520.xDavidson, D.W., Ecological studies of Neotropical ant gardens (1998) Ecology, 69, pp. 1138-1153Dejean, A., Beugnon, G., Persistent intercolonial trunk route marking in the African weaver ant Oecophylla longinoda, LATREILLE (Hymenoptera: Formicinae) - Tom Thumb's versus Ariadne's orienting strategies (1991) Ethology, 88, pp. 89-98Dejean, A., Corbara, B., Fernández, F., Delabie, J.H.C., Mosaicos de hormigas arbóreas en bosques y plantaciones tropicales (2003) Introducción a Las Hormigas de la Región Neotropical, pp. 149-158. , FERNÁNDEZ, F. (Ed.) Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, BogotáDejean, A., Corbara, B., Orivel, J., Leponce, M., Rainforest canopy ants: The implications of territoriality and predatory behavior (2007) Functional Ecosystems and Communities, 1, pp. 105-120Delabie, J.H.C., Trophobiosis between formicidae and hemiptera (sternorrhyncha and auchenorrhyncha): An overview (2001) Neotropical Entomology, 30 (4), pp. 501-516Del Claro, K., Oliveira, P.S., Ant-Homoptera interaction: Do alternative sugar sources distract tending ants? (1993) Oikos, 68, pp. 202-206Del Claro, K., Oliveira, P.S., Honeydew flicking by treehoppers provides cues to potential tending ants (1996) Animal Behaviour, 51, pp. 1071-1075Del-Claro, K., Oliveira, P.S., Conditional outcomes in a neotropical treehopper-ant association: Temporal and species-specific variation in ant protection and homopteran fecundity (2000) Oecologia, 124 (2), pp. 156-165Fagundes, F., Del-Claro, K., Ribeiro, S.P., Effects of the trophobiont herbivore Calloconophora pugionata (Hemiptera) on ant fauna associated with Myrcia obovata (Myrtaceae) in a montane tropical forest (2012) Psyche, 2012. , Article ID 783945Fitzjarrald, D.R., Moore, K.E., Physical methods of heat and mass exchange between forests and the atmosphere (1995) Forest Canopies, pp. 45-72. , LOWMAN, M.D. & NADKARNI, N.M. (Eds.) Academic Press, San Diego, CAFloren, A., Linsenmair, K.E., Do ant mosaics exist in pristine lowland rain forests? (2000) Oecologia, 123 (1), pp. 129-137Floren, A., Linsenmair, K.E., The importance of primary tropical rain forest for species diversity: An investigation using arboreal ants as an example (2005) Ecosystems, 8 (5), pp. 559-567. , DOI 10.1007/s10021-002-0272-8Goitía, W., Jaffé, K., Ant-plant associations in different forests in Venezuela (2009) Neotropical Entomology, 38, pp. 1-41Guerrero, R.J., Delabie, J.H.C., Dejean, A., Taxonomic contribution to the Aurita group of the ant genus Azteca (Formicidae: Dolichoderinae) (2010) Journal of Hymenopteran Research, 19, pp. 51-65Hahn, D.A., Wheeler, D.E., Seasonal foraging activity and bait preferences of ants on Barro Colorado Island, Panama (2002) Biotropica, 34 (3), pp. 348-356Holbrook, N.M., Lund, C.P., Photosynthesis in forest canopies (1995) Forest Canopies, pp. 411-430. , LOWMAN, M.D. & NADKARNI, N.M. (Eds.) Academic Press, San Diego, CAHölldobler, B., Territoriality among Oecophylla (1979) National Geographic Society Research Reports, 1977, pp. 369-372Holldobler, B., Lumsden, C.J., Territorial strategies in ants (1980) Science, 210 (4471), pp. 732-739Hölldobler, B., Wilson, E.O., (1990) The Ants, 732p. , The Belknap Press of Harvard University Press, Cambridgȩ MAJaffé, K., Hernandez, J.V., Goitía, W., Osio, A., Osborn, F., Cerda, H., Arab, A., Lopez, H., Flower ecology in the Neotropics: A flower-ant love-hate relationship (2003) Arthropods of Tropical Forests: Spatio-temporal Dynamics and Resource use in the Canopy, pp. 213-219. , BASSET, Y., NOVOTNY, V., MILLER, S. & KITCHING, R. (Eds.) Cambridge University Press, Cambridge, UKLeston, D., A Neotropical ant mosaic (1978) Annals of the Entomological Society of America, 71, pp. 649-653Longino, J.T., (2010) Specializing in Neotropical Myrmecology, , http://academic.evergreen.edu/projects/ants/, John T. Longino retrieved on 15 December 2010Lowman, M.D., Herbivory as a canopy process in rain forest trees (1995) Forest Canopies, pp. 431-455. , LOWMAN, M.D. & NADKARNI, N.M. (Eds.) Academic Press, San Diego, CAMajer, J.D., The ant mosaic in Ghana cocoa farms (1972) Bulletin of Entomological Research, 62, pp. 151-160Majer, J.D., Comparison of the arboreal ant mosaic in Ghana, Brazil, Papua New Guinea and Australia - Its structure and influence on ant diversity (1992) Hymenoptera and Biodiversity, pp. 115-141. , LASALLE, J. & GAULD, I. (Eds.) CAB International, Wallingford, UKMajer, J.D., Camerpesci, P., Ant species on tropical Australian tree crop and native ecosystems - Is there a mosaic? (1991) Biotropica, 23, pp. 173-181Majer, J.D., Delabie, J.H.C., An evaluation of Brazilian cocoa farm ants as potential biological control agents (1993) Journal of Plant Protection in the Tropics, 10, pp. 43-49Majer, J.D., Delabie, J.H.C., Smith, M.R.B., Arboreal ant community patterns in Brazilian cocoa farms (1994) Biotropica, 26, pp. 73-83Parker, G.G., Structure and microclimate of forest canopies (1995) Forest Canopies, pp. 73-106. , LOWMAN, M.D. & NADKARNI, N.M. (Eds.) Academic Press, San Diego, CAParr, C.L., Gibb, H., Competition and the role of dominant ants (2009) Ant Ecology, pp. 115-136. , LACH, L., PARR, C.L. & ABBOTT, K.L. (Eds.) Oxford University Press, OxfordPfeiffer, M., Linsenmair, K.E., Territoriality in the Malaysian giant ant Camponotus gigas (Hymenoptera/Formicidae) (2001) Journal of Ethology, 19 (2), pp. 75-85. , DOI 10.1007/s101640170002Ribas, C.R., Schoereder, J.H., Are all ant mosaics caused by competition? (2002) Oecologia, 131 (4), pp. 606-611. , DOI 10.1007/s00442-002-0912-xRibeiro, S.P., Insect herbivores in the canopies of savannas and rainforests (2003) Arthropods of Tropical Forests: Spatiotemporal Dynamics and Resource use in the Canopy, pp. 348-359. , BASSET, Y., NOVOTNY, V., MILLER, S. & KITCHING, R. (Eds.) Cambridge University Press, Cambridge, UKRichards, P.W., (1952) The Tropical Rainforest, 450p. , Cambridge University Press, Cambridge, UKRoom, P.M., The relative distribution of ant species in Ghana's cocoa farms (1971) Journal of Animal Ecology, 40, pp. 735-751Sanders, N.J., Crutsinger, G.M., Dunn, R.R., Majer, J.D., Delabie, J.H.C., An ant mosaic revisited: Dominant ant species disassemble arboreal ant communities but co-occur randomly (2007) Biotropica, 39 (3), pp. 422-427. , DOI 10.1111/j.1744-7429.2007.00263.xSchupp, E.W., Feener Jr., D.H., Phylogeny, lifeform, and habitat dependence of ant-defended plants in a Panamanian forest (1991) Ant-plant Interactions, pp. 175-197. , HUXLEY, C.R. & CUTLER, D.F. (Eds.) Oxford Science Publications, OxfordStork, N.E., The composition of the arthropod fauna of Bornean lowland rain forest trees (1991) Journal of Tropical Ecology, 7, pp. 161-180Tanaka, H.O., Yamane, S., Itioka, T., Effects of a ferndwelling ant species Crematogaster difformis, on the ant assemblages of emergent trees in a Bornean rainforest (2012) Annals of the Entomological Society of America, 105, pp. 592-598Tobin, J.E., Ecology and diversity of tropical forest canopy ants (1995) Forest Canopies, pp. 129-147. , LOWMAN, M.D. & NADKARNI, N. (Eds.) Academic Press, LondonWright, S.J., Horlyck, V., Basset, Y., Tropical canopy biology program, Republic of Panama (2003) Studying Forest Canopies from Above: The International Canopy Crane Network, pp. 138-158. , BASSET, Y., HORLYCK, V. & WRIGHT, S.J. (Eds.) Smithsonian Tropical Research Institute and UNEP, Panama City, PanamaYanoviak, S.P., Kaspari, M., Community structure and the habitat templet: Ants in the tropical forest canopy and litter (2000) Oikos, 89, pp. 256-26
    corecore