13 research outputs found

    State Estimation for the VASIMR Plasma Engine

    Get PDF
    This paper presents work on the application of virtual metrology techniques to the VAriable Specific Impulse Magnetoplasma Rocket (VASMIR) engine. The work concentrates on the estimation of internal temperatures of the rocket using state space models and Optical Emission Spectroscopy (OES). These estimations are useful as direct thermal measurements will not be available in the final system design

    Temperature Estimation for a Plasma-Propelled Rocket Engine

    Get PDF
    The VASIMR propulsion system is an ion propulsion system for spacecraft that uses magnetic fields to accelerate plasma to produce thrust. Undesired heat produced in the helicon section of VASIMR must be monitored and removed safely to avoid damage to system components, especially when higher power operating regimes are explored. This article demonstrates a strategy for distributed temperature estimation, based on OES measurement, and a model where the states represent the distributed temperature profile. OES provides a noninvasive measurement technique, which can be used as an output "correction" term for a state-estimation scheme. In this application, it is shown that the 2048 OES channels recorded can be accurately represented by only three principal components for temperature estimation. Use of the principal components as corrector terms in the state-space model dramatically improve model accuracy and the capability of the model to recover from unknown initial conditions and multiple system input changes

    State Estimation for the VASIMR Plasma Engine

    No full text
    This paper presents work on the application of virtual metrology techniques to the VAriable Specific Impulse Magnetoplasma Rocket (VASMIR) engine. The work concentrates on the estimation of internal temperatures of the rocket using state space models and Optical Emission Spectroscopy (OES). These estimations are useful as direct thermal measurements will not be available in the final system design

    State Estimation for the VASIMR Plasma Engine

    No full text
    This paper presents work on the application of virtual metrology techniques to the VAriable Specific Impulse Magnetoplasma Rocket (VASMIR) engine. The work concentrates on the estimation of internal temperatures of the rocket using state space models and Optical Emission Spectroscopy (OES). These estimations are useful as direct thermal measurements will not be available in the final system design

    State Estimation for the VASIMR Plasma Engine

    Get PDF
    This paper presents work on the application of virtual metrology techniques to the VAriable Specific Impulse Magnetoplasma Rocket (VASMIR) engine. The work concentrates on the estimation of internal temperatures of the rocket using state space models and Optical Emission Spectroscopy (OES). These estimations are useful as direct thermal measurements will not be available in the final system design

    Temperature Estimation for a Plasma-Propelled Rocket Engine

    Get PDF
    The VASIMR propulsion system is an ion propulsion system for spacecraft that uses magnetic fields to accelerate plasma to produce thrust. Undesired heat produced in the helicon section of VASIMR must be monitored and removed safely to avoid damage to system components, especially when higher power operating regimes are explored. This article demonstrates a strategy for distributed temperature estimation, based on OES measurement, and a model where the states represent the distributed temperature profile. OES provides a noninvasive measurement technique, which can be used as an output "correction" term for a state-estimation scheme. In this application, it is shown that the 2048 OES channels recorded can be accurately represented by only three principal components for temperature estimation. Use of the principal components as corrector terms in the state-space model dramatically improve model accuracy and the capability of the model to recover from unknown initial conditions and multiple system input changes

    Temperature Estimation for a Plasma-Propelled Rocket Engine

    No full text
    The VASIMR propulsion system is an ion propulsion system for spacecraft that uses magnetic fields to accelerate plasma to produce thrust. Undesired heat produced in the helicon section of VASIMR must be monitored and removed safely to avoid damage to system components, especially when higher power operating regimes are explored. This article demonstrates a strategy for distributed temperature estimation, based on OES measurement, and a model where the states represent the distributed temperature profile. OES provides a noninvasive measurement technique, which can be used as an output "correction" term for a state-estimation scheme. In this application, it is shown that the 2048 OES channels recorded can be accurately represented by only three principal components for temperature estimation. Use of the principal components as corrector terms in the state-space model dramatically improve model accuracy and the capability of the model to recover from unknown initial conditions and multiple system input changes

    Temperature Estimation for a Plasma-Propelled Rocket Engine

    No full text
    The VASIMR propulsion system is an ion propulsion system for spacecraft that uses magnetic fields to accelerate plasma to produce thrust. Undesired heat produced in the helicon section of VASIMR must be monitored and removed safely to avoid damage to system components, especially when higher power operating regimes are explored. This article demonstrates a strategy for distributed temperature estimation, based on OES measurement, and a model where the states represent the distributed temperature profile. OES provides a noninvasive measurement technique, which can be used as an output "correction" term for a state-estimation scheme. In this application, it is shown that the 2048 OES channels recorded can be accurately represented by only three principal components for temperature estimation. Use of the principal components as corrector terms in the state-space model dramatically improve model accuracy and the capability of the model to recover from unknown initial conditions and multiple system input changes

    Diseño de sistema de calentamiento para la simulación del flujo de plasma

    No full text
    VASIMR® plasma rocket and its possible applications are promoting innovations in the space propulsion area. Ad Astra Rocket Company (VASIMR® designer) constantly needs instruments to evaluate the plasma engine and its components, in order to acquire critical information to warrant a safe operation. This study describes the design and construction of a heating system, to simulate a plasma flux within a ceramic tube. This part of the engine plays a critical role, transporting a gas to ionize at high temperatures, transforming it in plasma for propulsion purposes. In the simulation system, some restrictions were established to match its labor with the tube and its operation conditions in the space.  Making the simulation inside a vacuum chamber to remove the air, and adapting the heaters in a specific position to relate them with the real plasma flux and its behavior, are examples of the simulation requirements. The simulation system was installed in Ad Astra Rocket Company, Costa Rica. It is used to acquire data and study the behavior of the tube under the previously mentioned conditions, and detail a computer-assisted model.El motor de plasma VASIMR® y sus futuras aplicaciones está causando una revolución en el transporte espacial. Ad Astra Rocket Company, la empresa encargada de su creación, requiere instrumentos que permitan evaluar los componentes del motor, para recopilar información y tener certeza de un funcionamiento seguro. Este artículo describe el diseño y construcción de un sistema de calentamiento, el cual simula el flujo de gas que será ionizado a alta temperatura para convertirse en plasma dentro de un tubo cerámico. Esta parte interna del VASIMR® cumple esta tarea para la respectiva propulsión. Se establecieron restricciones en el diseño para acercar más el sistema de simulación a las condiciones de trabajo en el espacio.  El ubicar el sistema dentro de una cámara de vacío y modelar adecuadamente el calentamiento en el conducto cilíndrico producto del flujo de plasma, muestran dicho acercamiento. La herramienta se instaló en la sede de la empresa, en Costa Rica, donde se utiliza para establecer el comportamiento del tubo a estas altas temperaturas y obtener datos experimentales. Posteriormente se podrá detallar un modelado asistido por computadora

    Diseño de sistema de calentamiento para la simulación del flujo de plasma

    No full text
    VASIMR® plasma rocket and its possible applications are promoting innovations in the space propulsion area. Ad Astra Rocket Company (VASIMR® designer) constantly needs instruments to evaluate the plasma engine and its components, in order to acquire critical information to warrant a safe operation. This study describes the design and construction of a heating system, to simulate a plasma flux within a ceramic tube. This part of the engine plays a critical role, transporting a gas to ionize at high temperatures, transforming it in plasma for propulsion purposes. In the simulation system, some restrictions were established to match its labor with the tube and its operation conditions in the space.  Making the simulation inside a vacuum chamber to remove the air, and adapting the heaters in a specific position to relate them with the real plasma flux and its behavior, are examples of the simulation requirements. The simulation system was installed in Ad Astra Rocket Company, Costa Rica. It is used to acquire data and study the behavior of the tube under the previously mentioned conditions, and detail a computer-assisted model.El motor de plasma VASIMR® y sus futuras aplicaciones está causando una revolución en el transporte espacial. Ad Astra Rocket Company, la empresa encargada de su creación, requiere instrumentos que permitan evaluar los componentes del motor, para recopilar información y tener certeza de un funcionamiento seguro. Este artículo describe el diseño y construcción de un sistema de calentamiento, el cual simula el flujo de gas que será ionizado a alta temperatura para convertirse en plasma dentro de un tubo cerámico. Esta parte interna del VASIMR® cumple esta tarea para la respectiva propulsión. Se establecieron restricciones en el diseño para acercar más el sistema de simulación a las condiciones de trabajo en el espacio.  El ubicar el sistema dentro de una cámara de vacío y modelar adecuadamente el calentamiento en el conducto cilíndrico producto del flujo de plasma, muestran dicho acercamiento. La herramienta se instaló en la sede de la empresa, en Costa Rica, donde se utiliza para establecer el comportamiento del tubo a estas altas temperaturas y obtener datos experimentales. Posteriormente se podrá detallar un modelado asistido por computadora
    corecore