535 research outputs found

    Supersymmetric Homogeneous Quantum Cosmologies Coupled to a Scalar Field

    Get PDF
    Recent work on N=2N=2 supersymmetric Bianchi type IX cosmologies coupled to a scalar field is extended to a general treatment of homogeneous quantum cosmologies with explicitely solvable momentum constraints, i.e. Bianchi types I, II, VII, VIII besides the Bianchi type IX, and special cases, namely the Friedmann universes, the Kantowski-Sachs space, and Taub-NUT space. Besides the earlier explicit solution of the Wheeler DeWitt equation for Bianchi type IX, describing a virtual wormhole fluctuation, an additional explicit solution is given and identified with the `no-boundary state'.Comment: 23 PAGE

    The mesencephalic locomotor region recruits V2a reticulospinal neurons to drive forward locomotion in larval zebrafish

    Get PDF
    The mesencephalic locomotor region (MLR) is a brain stem area whose stimulation triggers graded forward locomotion. How MLR neurons recruit downstream vsx2+ (V2a) reticulospinal neurons (RSNs) is poorly understood. Here, to overcome this challenge, we uncovered the locus of MLR in transparent larval zebrafish and show that the MLR locus is distinct from the nucleus of the medial longitudinal fasciculus. MLR stimulations reliably elicit forward locomotion of controlled duration and frequency. MLR neurons recruit V2a RSNs via projections onto somata in pontine and retropontine areas, and onto dendrites in the medulla. High-speed volumetric imaging of neuronal activity reveals that strongly MLR-coupled RSNs are active for steering or forward swimming, whereas weakly MLR-coupled medullary RSNs encode the duration and frequency of the forward component. Our study demonstrates how MLR neurons recruit specific V2a RSNs to control the kinematics of forward locomotion and suggests conservation of the motor functions of V2a RSNs across vertebrates. Carbo-Tano and colleagues investigate the mesencephalic locomotor region in larval zebrafish and its role in triggering forward locomotion by activating specific sets of hindbrain V2a reticulospinal neurons

    Identification of residual tumor with intraoperative contrast-enhanced ultrasound during glioblastoma resection

    Get PDF
    Objective: The purpose of this study was to assess the capability of contrast-enhanced ultrasound (CEUS) to identify residual tumor mass during glioblastoma multiforme (GBM) surgery, to increase the extent of resection. Methods: The authors prospectively evaluated 10 patients who underwent surgery for GBM removal with navigated ultrasound guidance. Navigated B-mode and CEUS were performed prior to resection, during resection, and after complete tumor resection. Areas suspected for residual tumors on B-mode and CEUS studies were localized within the surgical field with navigated ultrasound and samples were sent separately for histopathological analysis to confirm tumor presence. Results: In all cases tumor remnants were visualized as hyperechoic areas on B-mode, highlighted as CEUS-positive areas, and confirmed as tumoral areas on histopathological analysis. In 1 case only, CEUS partially failed to demonstrate residual tumor because the residual hyperechoic area was devascularized prior to ultrasound contrast agent injection. In all cases CEUS enhanced B-mode findings. Conclusions: As has already been shown in other neoplastic lesions in other organs, CEUS is extremely specific in the identification of residual tumor. The ability of CEUS to distinguish between tumor and artifacts or normal brain on B-mode is based on its capacity to show the vascularization degree and not the echogenicity of the tissues. Therefore, CEUS can play a decisive role in the process of maximizing GBM resection
    • …
    corecore