2,009 research outputs found

    Resonant tunnelling between Luttinger liquids: solvable case

    Full text link
    We discuss the conductance of a Luttinger liquid interrupted by a quantum dot containing a single resonant level. Using bosonisation and re-fermionisation methods, we find a mapping to a Kondo-type problem which possesses a non-trivial Toulouse-type solvable point. At this point, we obtain an analytic expression for the non-linear current-voltage characteristics and analyse the differential conductance and the width of the resonance peak as functions of bias and gate voltages, temperature, and barrier asymmetry. We also determine the exact scaling function for the linear conductance.Comment: 4 pages, 3 figures (eps files

    Current facilitation by plasmon resonances between parallel wires of finite length

    Full text link
    The current voltage (IV) characteristics for perpendicular transport through two sequentially coupled wires of finite length is calculated analytically. The transport within a Coulomb blockade step is assisted by plasmon resonances that appear as steps in the IV characteristics with positions and heights depending on inter- and intrawire interactions. In particular, due to the interwire interactions, the peak positions shift to lower voltages in comparison to the noninteracting wires which reflects the facilitation of current by interactions. The interwire interactions are also found to enhance the thermally activated current.Comment: 5 pages, 1figur

    Preferred Basis in a Measurement Process

    Get PDF
    The effect of decoherence is analysed for a free particle, interacting with an environment via a dissipative coupling. The interaction between the particle and the environment occurs by a coupling of the position operator of the particle with the environmental degrees of freedom. By examining the exact solution of the density matrix equation one finds that the density matrix becomes completely diagonal in momentum with time while the position space density matrix remains nonlocal. This establishes the momentum basis as the emergent 'preferred basis' selected by the environment which is contrary to the general expectation that position should emerge as the preferred basis since the coupling with the environment is via the position coordinate.Comment: Standard REVTeX format, 10 pages of output. Accepted for publication in Phys. Rev

    Models for local ohmic quantum dissipation

    Full text link
    We construct model master equations for local quantum dissipation. The master equations are in the form of Lindblad generators, with imposed constraints that the dissipations be strictly linear (i.e. ohmic), isotropic and translationally invariant. A particular form for is chosen to satisfy the constraints. The resulting master equations are given in both the Schr\"odinger and Heisenberg forms. We obtain fluctuation-dissipation relations, and discuss the relaxation of average kinetic energy to effective thermal equilibrium values. We compare our results to the Dekker and the Caldeira-Leggett master equations. These master equations allow a more general approach to quantum dissipation and the dynamics of quantum coherence to account for the nontrivial system-environment coupling in a local environment.Comment: 19 pages, REVTEX, PSU/TH/12

    Resistivity due to low-symmetrical defects in metals

    Full text link
    The impurity resistivity, also known as the residual resistivity, is calculated ab initio using multiple-scattering theory. The mean-free path is calculated by solving the Boltzmann equation iteratively. The resistivity due to low-symmetrical defects, such as an impurity-vacancy pair, is calculated for the FCC host metals Al and Ag and the BCC transition metal V. Commonly, 1/f noise is attributed to the motion of such defects in a diffusion process.Comment: 24 pages in REVTEX-preprint format, 10 Postscript figures. Phys. Rev. B, vol. 57 (1998), accepted for publicatio

    Bulk and boundary zero-bias anomaly in multi-wall carbon nanotubes

    Full text link
    We compute the tunneling density of states of doped multi-wall nanotubes including disorder and electron-electron interactions. A non-conventional Coulomb blockade reflecting nonperturbative Altshuler-Aronov-Lee power-law zero-bias anomalies is found, in accordance with recent experimental results. The presence of a boundary implies a universal doubling of the boundary exponent in the diffusive limit.Comment: 4 pages, to appear in PRL (revised version

    Spin-orbit coupling and electron spin resonance for interacting electrons in carbon nanotubes

    Get PDF
    We review the theoretical description of spin-orbit scattering and electron spin resonance in carbon nanotubes. Particular emphasis is laid on the effects of electron-electron interactions. The spin-orbit coupling is derived, and the resulting ESR spectrum is analyzed both using the effective low-energy field theory and numerical studies of finite-size Hubbard chains and two-leg Hubbard ladders. For single-wall tubes, the field theoretical description predicts a double peak spectrum linked to the existence of spin-charge separation. The numerical analysis basically confirms this picture, but also predicts additional features in finite-size samples.Comment: 19 pages, 4 figures, invited review article for special issue in J. Phys. Cond. Mat., published versio

    Competition between magnetic field dependent band structure and coherent backscattering in multiwall carbon nanotubes

    Full text link
    Magnetotransport measurements in large diameter multiwall carbon nanotubes (20-40 nm) demonstrate the competition of a magnetic-field dependent bandstructure and Altshuler-Aronov-Spivak oscillations. By means of an efficient capacitive coupling to a backgate electrode, the magnetoconductance oscillations are explored as a function of Fermi level shift. Changing the magnetic field orientation with respect to the tube axis and by ensemble averaging, allows to identify the contributions of different Aharonov-Bohm phases. The results are in qualitative agreement with numerical calculations of the band structure and the conductance.Comment: 4 figures, 5 page

    Current fluctuations in a single tunnel junction

    Full text link
    We study noise spectra of currents through a tunnel junction in weak tunneling limit. We introduce effective capacitance to take into account the interaction effect and explicitly incorporate the electromagnetic environment of the junction into the formulation. We study the effect of charging energy and macroscopic environment on noise spectra. We calculate current fluctuations at tunneling barrier and fluctuations measured at leads. It is shown that two fluctuations have different noise spectra and the relation between them is nontrivial. We provide an explanation for the origin of the difference. Experimental implications are discussed.Comment: 25 pages, Revtex 3.
    • …
    corecore