7 research outputs found

    Formation of a transient amorphous solid in low density aqueous charged sphere suspensions

    Full text link
    Colloidal glasses form from hard spheres, nearly hard spheres, ellipsoids and platelets or their attractive variants have been studied in detail. Complementing and checking theoretical approaches and simulations, the many different types of model systems have significantly advanced our understanding of the glass transition in general. Despite their early prediction, however, no experimental charged sphere glasses have been found at low density, where the competing process of crystallization prevails. We here report the formation of a transient amorphous solid formed from charged polymer spheres suspended in thoroughly deionized water at volume fractions of 0.0002-0.01. From optical experiments, we observe the presence of short-range order and an enhanced shear rigidity as compared to the stable polycrystalline solid of body centred cubic structure. On a density dependent time scale of hours to days, the amorphous solid transforms into this stable structure. We further present preliminary dynamic light scattering data showing the evolution of a second slow relaxation process possibly pointing to a dynamic heterogeneity known from other colloidal glasses and gels.We compare our findings to the predicted phase behaviour of charged sphere suspensions and discuss possible mechanisms for the formation of this peculiar type of colloidal glass.Comment: 6 figure

    Universal scaling of flow curves: comparison between experiments and simulations

    Get PDF
    Yield stress materials form an interesting class of materials that behave like solids at small stresses, but start to flow once a critical stress is exceeded. It has already been reported both in experimental and simulation work that flow curves of different yield stress materials can be scaled with the distance to jamming or with the confining pressure. However, different scaling exponents are found between experiments and simulations. In this paper we identify sources of this discrepancy. We numerically relate the volume fraction with the confining pressure and discuss the similarities and differences between rotational and oscillatory measurements. Whereas simulations are performed in the elastic response regime close to the jamming transition and with very small amplitudes to calculate the scaling exponents, these conditions are hardly possible to achieve experimentally. Measurements are often performed far away from the critical volume fraction and at large amplitudes. We show that these differences are the underlying reason for the different exponents for rescaling flow curves

    Ethyl cellulose nanoparticles as stabilizers for Pickering emulsions

    Get PDF
    Pickering emulsions stabilized by ethyl cellulose nanoparticles have recently received –great attention for their remarkable stability and numerous industrial applications. De- spite this, the exact stabilization mechanism of such Pickering emulsions is still not fully understood. Both the stabilization of the emulsion by particle adsorption at the inter- face and through network formation in the continuous phase (leading to a yield stress) have been suggested. In this work we study soybean oil-in-water emulsions stabilized by ethyl cellulose nanoparticles and find, by the use of confocal microscopy and interfa- cial tension measurements, that the main stabilization mechanism of this nanoparticle- stabilized emulsions is the adsorption of the particles at the interface, instead of forming a network in the continuous phase. At the same time, oscillatory rheology measurements reveal that the emulsions exhibit a yield stress well below the random close-packing limit for hard spheres, suggesting short-range interactions between the droplets caused by the presence of the particles at the interface. The presence of the particles at the interface in combination with the observed rheological behavior of an attractive emulsion gives a strong indication for a particle-bridged stabilized emulsions

    Scaling of flow curves : Comparison between experiments and simulations

    Get PDF
    Yield-stress materials form an interesting class of materials that behave like solids at small stresses, but start to flow once a critical stress is exceeded. It has already been reported both in experimental and simulation work that flow curves of different yield-stress materials can be scaled with the distance to jamming or with the confining pressure. However, different scaling exponents are found between experiments and simulations. In this paper we identify sources of this discrepancy. We numerically relate the volume fraction with the confining pressure and discuss the similarities and differences between rotational and oscillatory measurements. Whereas simulations are performed in the elastic response regime close to the jamming transition and with very small amplitudes to calculate the scaling exponents, these conditions are hardly possible to achieve experimentally. Measurements are often performed far away from the critical volume fraction and at large amplitudes. We show that these differences are the underlying reason for the different exponents for rescaling flow curves

    Emulsion Destabilization by Squeeze Flow

    No full text
    There is a large debate on the destabilization mechanism of emulsions. We present a simple technique using mechanical compression to destabilize oil-in-water emulsions. Upon compression of the emulsion, the continuous aqueous phase is squeezed out, while the dispersed oil phase progressively deforms from circular to honeycomb-like shapes. The films that separate the oil droplets are observed to thin and break at a critical oil/water ratio, leading to coalescence events. Electrostatic interactions and local droplet rearrangements do not determine film rupture. Instead, the destabilization occurs like an avalanche propagating through the system, starting at areas where the film thickness is smallest
    corecore