239 research outputs found

    Renormalization Group Running of Dimension-Six Sources of Parity and Time-Reversal Violation

    Get PDF
    We perform a systematic study of flavor-diagonal parity- and time-reversal-violating operators of dimension six which could arise from physics beyond the SM. We begin at the unknown high-energy scale where these operators originate. At this scale the operators are constrained by gauge invariance which has important consequences for the form of effective operators at lower energies. In particular for the four-quark operators. We calculate one-loop QCD and, when necessary, electroweak corrections to the operators and evolve them down to the electroweak scale and subsequently to hadronic scales. We find that for most operators QCD corrections are not particularly significant. We derive a set of operators at low energy which is expected to dominate hadronic and nuclear EDMs due to physics beyond the SM and obtain quantitative relations between these operators and the original dimension-six operators at the high-energy scale. We use the limit on the neutron EDM to set bounds on the dimension-six operators.Comment: Matches published version, 35 pages, 6 figures, minor correction

    The phenomenology of electric dipole moments in models of scalar leptoquarks

    Full text link
    We study the phenomenology of electric dipole moments (EDMs) induced in various scalar leptoquark models. We consider generic leptoquark couplings to quarks and leptons and match to Standard Model effective field theory. After evolving the resulting operators to low energies, we connect to EDM experiments by using up-to-date hadronic, nuclear, and atomic matrix elements. We show that current experimental limits set strong constraints on the possible CP-violating phases in leptoquark models. Depending on the quarks and leptons involved in the interaction, the existing searches for EDMs of leptons, nucleons, atoms, and molecules all play a role in constraining the CP-violating couplings. We discuss the impact of hadronic and nuclear uncertainties as well as the sensitivities that can be achieved with future EDM experiments. Finally, we study the impact of EDM constraints on a specific leptoquark model that can explain the recent BB-physics anomalies.Comment: Published versio

    Right-handed charged currents in the era of the Large Hadron Collider

    Full text link
    We discuss the phenomenology of right-handed charged currents in the framework of the Standard Model Effective Field Theory, in which they arise due to a single gauge-invariant dimension-six operator. We study the manifestations of the nine complex couplings of the WW to right-handed quarks in collider physics, flavor physics, and low-energy precision measurements. We first obtain constraints on the couplings under the assumption that the right-handed operator is the dominant correction to the Standard Model at observable energies. We subsequently study the impact of degeneracies with other Beyond-the-Standard-Model effective interactions and identify observables, both at colliders and low-energy experiments, that would uniquely point to right-handed charged currents.Comment: 50 pages plus appendices and reference

    Neutrinoless double beta decay in chiral effective field theory: lepton number violation at dimension seven

    Full text link
    We analyze neutrinoless double beta decay (0νββ0\nu\beta\beta) within the framework of the Standard Model Effective Field Theory. Apart from the dimension-five Weinberg operator, the first contributions appear at dimension seven. We classify the operators and evolve them to the electroweak scale, where we match them to effective dimension-six, -seven, and -nine operators. In the next step, after renormalization group evolution to the QCD scale, we construct the chiral Lagrangian arising from these operators. We develop a power-counting scheme and derive the two-nucleon 0νββ0\nu\beta\beta currents up to leading order in the power counting for each lepton-number-violating operator. We argue that the leading-order contribution to the decay rate depends on a relatively small number of nuclear matrix elements. We test our power counting by comparing nuclear matrix elements obtained by various methods and by different groups. We find that the power counting works well for nuclear matrix elements calculated from a specific method, while, as in the case of light Majorana neutrino exchange, the overall magnitude of the matrix elements can differ by factors of two to three between methods. We calculate the constraints that can be set on dimension-seven lepton-number-violating operators from 0νββ0\nu\beta\beta experiments and study the interplay between dimension-five and -seven operators, discussing how dimension-seven contributions affect the interpretation of 0νββ0\nu\beta\beta in terms of the effective Majorana mass mββm_{\beta \beta}.Comment: Matches version published in JHE

    Unraveling models of CP violation through electric dipole moments of light nuclei

    Get PDF
    We show that the proposed measurements of the electric dipole moments of light nuclei in storage rings would put strong constraints on models of flavor-diagonal CP violation. Our analysis is exemplified by a comparison of the Standard Model including the QCD theta term, the minimal left-right symmetric model, a specific version of the so-called aligned two-Higgs doublet model, and briefly the minimal supersymmetric extension of the Standard Model. By using effective field theory techniques we demonstrate to what extend measurements of the electric dipole moments of the nucleons, the deuteron, and helion could discriminate between these scenarios. We discuss how measurements of electric dipole moments of other systems relate to the light-nuclear measurements.Comment: Published versio

    CP-violating axion interactions in effective field theory

    Full text link
    Axions are introduced to explain the observed smallness of the θˉ\bar \theta term of QCD. Standard Model extensions typically contain new sources of CP violation, for instance to account for the baryon asymmetry of the universe. In the presence of additional CP-violating sources a Peccei-Quinn mechanism does not remove all CP violation, leading to CP-odd interactions among axions and Standard Model fields. In this work, we use effective field theory to parametrize generic sources of beyond-the-Standard-Model CP violation. We systematically compute the resulting CP-odd couplings of axions to leptons and hadrons by using chiral perturbation theory. We discuss in detail the phenomenology of the CP-odd axion couplings and compare limits from axion searches, such as fifth force and monopole-dipole searches and astrophysics, to direct limits on the CP-violating operators from electric dipole moment experiments. While limits from electric dipole moment searches are tight, the proposed ARIADNE experiment can potentially improve the existing constraints in a window of axion masses
    corecore