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1 Introduction

The Standard Model (SM) of particle physics contains in the quark sector two sources of

P and T violation.1 The best understood source is the phase that is present in the three-

generation quark mixing matrix, the Cabibbo-Kobayashi-Maskawa (CKM) [1, 2] matrix,

that induces CP -violating effects in flavor-changing processes. On the other hand, its

contribution to flavor-diagonal P - and T -odd observables, such as electric dipole moments

(EDMs), is highly suppressed and inaccessible with current experimental techniques. The

second P - and T -violating (/P/T ) source is the QCD vacuum angle θ̄ [3, 4] which, in principle,

would generate large hadronic EDMs. The null-measurement of the neutron EDM [5]

strongly limits θ̄ . 10−10 [6, 7]. The puzzle of why θ̄ is so extremely small or perhaps zero

is called the strong CP problem. In addition, it seems that both CP -odd sources in the SM

are unable to account for the current matter-antimatter asymmetry in the universe [8, 9]. It

is therefore believed that the SM cannot be the whole story and that additional /P/T sources

exist. It has been known for a long time that searches for EDMs are highly sensitive probes

of additional, flavor-diagonal CP -violating interactions. Excellent reviews on EDMs can

be found in refs. [10–12].

The above considerations have led to large experimental endeavours to measure EDMs

of leptons, hadrons, nuclei, atoms, and molecules (for an overview, see ref. [13]). At the

moment the strongest existing limits have been obtained for the neutron EDM [5], the EDM

of the diamagnetic 199Hg atom [14], and the electron EDM (inferred from measurements

on the polar molecule ThO [15]). The main motivations for this work are the plans to

measure the EDMs of charged spin-carrying particles in storage rings [16–19]. The spin

precession of a particle trapped in such a ring is affected by its EDM and it has been

proposed that this method can be used to measure the EDMs of the proton and deuteron

with a precision of 10−29 e cm, three orders of magnitude better than the current neutron

EDM limit. EDMs of other light ions, such as the helion (3He nucleus) and triton (3H

nucleus) are candidates as well.

EDM experiments are very good probes for new /P/T sources because, as mentioned,

at current experimental accuracies they are ‘background-free’ probes of new physics. Any

finite signal in one of the upcoming experiments would be due to physics not accounted

for by the Kobayashi-Maskawa (KM) mechanism [2]. This source of CP violation induces

1The models studied in this paper are CPT invariant. Therefore, P and T violation amounts to CP

violation.
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only very small light quark and nucleon EDMs of the order of 10−31 e cm [20, 21] and even

tinier lepton EDMs. A larger EDM signal might be caused by physics beyond the SM

(BSM). However, it is not excluded that an extremely small, but nonzero, θ̄ term could

be its origin. An interesting and important problem is therefore to investigate whether

it is possible to trace a nonzero θ̄ with EDM experiments. That is, can we confidently

disentangle the θ̄ term from possible BSM sources?2

To answer this question several obstacles need to be overcome. In order to separate θ̄

from BSM physics we need a description of the latter. Lacking knowledge of BSM physics,

the only model-independent description relies on effective field theory (EFT), which re-

quires the addition of the most general set of CP -violating higher-dimensional operators to

the SM Lagrangian. The most important operators are those of dimension six (before elec-

troweak gauge-symmetry breaking) [22, 23], while the effects of even higher-dimensional

operators are expected to be suppressed. Once the set of effective dimension-six opera-

tors has been identified, it needs to be renormalization-group evolved to the low energies

where the experiments take place [24–28]. The evolution of the effective operators can be

calculated in perturbation theory only down to a scale Λχ of the order of 1 GeV. Below

this scale, the expansion in the strong coupling constant breaks down and nonperturbative

techniques become necessary. At the scale Λχ, the /P/T low-energy effective Lagrangian of

the quark and gluon degrees of freedom schematically takes on the form (see also figure 1):

L/P/T = −θ̄ g2

64π2
εµναβGaµνG

a
αβ −

1

2

∑
q=u,d

(
dq q̄iσ

µνγ5q Fµν + d̃q q̄iσ
µνγ5taq G

a
µν

)
+
dW
6
fabcε

µναβGaαβG
b
µρG

c ρ
ν +

∑
i,j,k,l=u,d

Cijkl q̄iΓqj q̄kΓ
′ql , (1.1)

in terms of the quark fields q, the photon and gluon field-strength tensors Fµν and Gaµν ,

respectively. The fabc are the structure constants and the ta are the generators in the

fundamental representation of SU(3)c. The coefficients dq and d̃q are the electric dipole

and chromo-electric dipole moments (CEDM) of quarks, and the coefficient dW of the

Weinberg operator [29] can be interpreted as the chromo-electric dipole moment (gCEDM)

of the gluon [25, 30]. The last term contains four-quark operators with zero net-flavor where

the matrices Γ and Γ′ denote various Lorentz structures such that the four-quark operators

violate the CP symmetry. In this work, we consider the low-energy /P/T Lagrangian for u and

d valence quarks only, which is appropriate for analyzing the EDMs of nucleons and light

nuclei. The first operator in eq. (1.1) is the dimension-four QCD θ̄ term, while the others

are or arise from dimension-six operators (before electroweak gauge-symmetry breaking)

and are generated by BSM dynamics. The second and third operators are the quark EDMs

and chromo-EDMs respectively, the fourth operator is the Weinberg operator [29], and the

last term denotes various /P/T four-quark operators. We will discuss these operators in much

more detail in the subsequent sections.

2Solely for the purpose of terminology we distinguish in this paper between the θ̄ term and BSM sources

of CP violation. Of course, if a small but nonzero θ̄ exists, it may actually be generated by some BSM

dynamics.
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Figure 1. Schematic drawings of the /P/T dimension-six operators in eq. (1.1). The QCD θ̄ term

is not shown. The solid, curly, and wavy lines denote external quark, gluon, and photon states

respectively. The first and second diagram depict the quark EDM and chromo-EDM, respectively,

the third diagram the Weinberg operator, and the fourth diagram a four-quark operator. Vertices

with two or more gluon fields associated with the quark CEDM and the Weinberg operator are

not shown.

Below the scale Λχ, EFTs are again a very powerful tool in understanding low-energy

strong interactions. By constructing the most general interactions for the low-energy de-

grees of freedom which are consistent with the symmetries of QCD, chiral symmetry in

particular, and with their spontaneous and explicit breakdown, it is possible to obtain an

effective low-energy description of QCD called chiral perturbation theory (χPT) [31–35].

The main advantage of χPT is that observables can be calculated perturbatively with an

expansion parameter q/Λχ where q is the typical momentum scale of the process under

consideration. Each interaction appearing in the chiral Lagrangian is associated with a

low-energy constant (LEC) whose size is not fixed by symmetry considerations and de-

pends on the strong nonperturbative dynamics. However, the perturbative nature of χPT

ensures that most observables only depend on a small number of LECs. Once these LECs

have been determined, either by fitting them to data or by direct lattice calculations, other

observables can be firmly predicted. Another major success of χPT is the description of the

nucleon-nucleon and multi-nucleon interactions. This has opened up the way to describe

nucleons and (light) nuclei in a unified framework [36–38].

In recent years, χPT has been extended to include effects of the θ̄ term [39] and /P/T

BSM operators up to dimension-six [40] which induce /P/T interactions in the chiral La-

grangian. The so-amended χPT allows for the calculation of the EDMs of the nucleon [41–

48] and light nuclei [49–51] in terms of the various LECs associated with the /P/T chiral

interactions. The nuclear uncertainties can be quantified and improved upon systemati-

cally. Although the hadronic uncertainty in the sizes of the LECs themselves is sizable, the

same LECs appear in several EDMs which means that the hadronic uncertainties cancel to

a large degree. It is this property, in addition to the high envisaged experimental accuracy,

which makes the plans to measure the EDMs of light nuclei so exciting. Calculations of

EDMs of heavier systems, such as 199Hg, suffer from much larger nuclear uncertainties

which are hard to quantify [12, 52].

Although the θ̄ term and the higher-dimensional operators in eq. (1.1) all break P

and T , they transform differently under chiral and isospin rotations. This ensures that the

different /P/T sources induce different /P/T chiral Lagrangians, which, in turn, lead to distinct

patterns of EDMs. This observation has been used in recent works which concluded that

it is possible to disentangle the θ̄ term from the higher-dimensional BSM operators, given

enough EDM measurements [49–51, 53]. In particular, the EDM of the deuteron plays an
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important role. Furthermore, several classes of dimension-six operators can be disentangled

among themselves as well. Again the deuteron EDM plays an important role, but the EDMs

of the helion and/or triton give important complementary information.

The investigation of light-nuclear EDMs so far has focused mainly on the θ̄ term

and dimension-six operators individually. That is, it was assumed [40, 49–51] that one

operator is dominant over the others which has the advantage of a rather clean analysis.

It can be questioned, however, how realistic such a scenario is. It could very well be

that the underlying microscopic theory induces contributions of similar size to several

effective dimension-six operators. Furthermore, even if only one operator turns out to be

dominant at high energies, this operator can induce sizable contributions to other operators

when evolved to the low-energy scale where EDM experiments take place. Therefore, the

assumption of one dominant dimension-six operator at low energies might not be the most

likely one. To investigate this in more detail, we study in this work four distinct scenarios

of non-KM CP violation and investigate whether EDM measurements can discriminate

between them. However, the methods used are in no way limited to these four scenarios

and can be easily applied to other BSM models.

In the first scenario we assume the SM θ̄ term to be the dominant source. Since, with

the exception of the CKM matrix, this is the only CP -violating term of dimension four

in the hadronic sector, it provides the background to which the other scenarios, which

induce /P/T operators with dimension of at least of dimension six, have to be compared

to. The θ̄ scenario has already been studied extensively in the literature (although we will

consider here some very recent results on light-nuclear EDMs [54, 55]) and we will mainly

summarize the results in the following. For the BSM models discussed in this paper, we

assume that the θ̄ term is absent, for instance, due to a Peccei-Quinn symmetry [56, 57] of

the Lagrangian of the respective model.

The second scenario is the minimal left-right symmetric model [58–60]. In this model,

parity is restored at energies above the electroweak scale by extending the SM gauge

symmetry to include SU(2)R. It turns out that in this model the dominant contribution

to the respective /P/T Lagrangian at high energies is due to one particular dimension-six

operator. This operator mixes with only one additional operator such that the low-energy

Lagrangian at the quark level is rather simple. However, these operators transform in a

rather complicated way under chiral symmetry. As a result, the induced chiral Lagrangian

contains some interesting and nontrivial structures. These structures induce a profound

hierarchy of nuclear EDMs which is quite distinct from the θ̄ scenario.

The third scenario we investigate is based on the so-called aligned two-Higgs-doublet

model (a2HDM) [61]. Contrary to the two scenarios just outlined, in this model, which ex-

emplifies the generic feature of non-KM CP violation in two-Higgs doublet-models, several

/P/T operators are induced at the level of quarks and gluons which, in general, make contri-

butions of comparable size to hadronic EDMs. The coefficients of these operators depend

on different parameters of the model. The main goal of this work to show that the EDMs

of nucleons and light nuclei can be used to disentangle different scenarios, and we do not

aim at a fully detailed analysis of the a2HDM. We therefore make certain assumptions [62]

regarding the neutral Higgs sector such that all induced higher-dimensional BSM opera-
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tors depend on the same combination of parameters. Despite this simplification, the EDMs

of nucleons and light nuclei receive comparable contributions from three BSM operators

which makes the analysis more complicated and uncertain. Nevertheless, we demonstrate

that the model still leads to a different hierarchy of EDMs than the previous scenarios.

Furthermore, we shortly discuss another popular BSM model with non-KM CP viola-

tion, the minimal supersymmetric extension (MSSM) of the Standard Model. Also in this

model, the contribution to the hadronic EDMs is, in general, not dominated by just one

/P/T operator at the level of quarks and gluons.

We will show that estimates of the nucleon EDMs alone are insufficient to disentangle

these scenarios. In fact, the predictions and estimates of the two-nucleon contribution

to the EDMs of the light ions, especially of the deuteron and helion, will be crucial in

disentangling the various sources. The measurements of the deuteron and helion EDM

provide in this regard ‘orthogonal’ information, because the isospin-filter property of the

deuteron favors isospin-breaking interactions, while the helion allows for both isospin-

conserving and -breaking contributions.

This article is organized as follows. In section 2 we discuss the four different scenarios

of CP violation outlined above. In particular we focus on the low-energy /P/T interac-

tions that are induced in these scenarios. In section 3 we discuss the most important /P/T

hadronic interactions that appear in each of the scenarios. In particular we focus on the

/P/T pion-nucleon interactions and the nucleon EDMs. In section 4 we turn to the EDMs

of light nuclei. We argue that chiral effective field theory is a powerful tool to study these

observables and show that measurements of light-nuclear EDMs can be used to disentangle

different scenarios. In section 5 we briefly discuss other systems, in particular the EDMs

of the electron and the diamagnetic atom 199Hg. We summarize, conclude, and give an

outlook in section 6. Several appendices are devoted to technical details.

2 Four scenarios of CP violation

In this section we discuss in detail four distinct scenarios of CP violation. In particular

we discuss the low-energy /P/T operators that are induced in each scenario. In this work we

mainly focus on the EDMs of nucleons and light nuclei. Therefore we concentrate here on

the /P/T operators involving quark and/or gluon fields, while (semi-)leptonic operators are

discussed in section 5.

2.1 The QCD θ̄ term

The QCD Lagrangian for two quark flavors is given by

LQCD = −1

4
GaµνG

a,µν + q̄(iD/ −M)q − θ̄ g2

64π2
εµναβGaµνG

a
αβ , (2.1)

where q = (u , d)T denotes the quark doublet of up and down quarks. As already mentioned

above, the restriction to two quark flavors is appropriate for analyzing the EDMs of nucleons

and light nuclei within the framework of χPT. In eq. (2.1) Gaµν is the gluon field strength

tensor, εµναβ (ε0123 = +1) is the completely antisymmetric tensor in four dimensions, Dµ

– 5 –
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the gauge-covariant derivative, M the real-valued quark 2 × 2 mass matrix, and θ̄ the

coupling constant of the so-called θ̄ term which violates P and T . In this expression, we

have absorbed the complex phase of the quark mass matrix into θ̄ = θ + arg det(M). Due

to the UA(1) anomaly, an axial U(1) transformation of the quark fields can be used to

remove the θ̄ term from the Lagrangian. After vacuum alignment [6] and assuming θ̄ � 1,

the QCD Lagrangian becomes

LQCD = −1

4
GaµνG

a,µν + q̄iD/ q − m̄q̄q − εm̄q̄τ3q +m∗θ̄q̄iγ
5q , (2.2)

in terms of the averaged quark mass m̄ = (mu+md)/2 in the two-flavor case, the quark-mass

difference ε = (mu−md)/(mu+md), and the reduced quark mass m∗ = mumd/(mu+md) =

m̄(1 − ε2)/2. This expression shows that /P/T effects due to the θ̄ term would vanish if

one of the quarks were massless. However, this is not realized in nature [63]. We also

give the explicit PT -even quark mass terms here because, as we will discuss later, /P/T

hadronic interactions induced by the θ̄ term are closely linked to PT -even isospin-breaking

interactions induced by the quark mass difference.

Before continuing the analysis of the θ̄ term, we first discuss the BSM scenarios used

in this paper. In these scenarios we assume that the θ̄ term is absent, for example, due

to the Peccei-Quinn mechanism [56, 57] or by extreme fine-tuning. It should be noted

that the Peccei-Quinn mechanism would, apart from removing the θ̄ term, also affect the

dimension-six operators appearing in the other scenarios [11].

2.2 The minimal left-right symmetric model

Left-right symmetric (LR) models are based on the gauge group SU(3)c×SU(2)L×SU(2)R×
U(1)B−L with an unbroken parity symmetry at high energies [58, 59, 64–66]. The abelian

subgroup is associated with baryon minus lepton number. The left-handed and right-

handed quarks and leptons form fundamental representations of SU(2)L and SU(2)R, re-

spectively. As a consequence, right-handed neutrinos are introduced automatically:

QL =

(
UL
DL

)
∈ (3, 2, 1, 1/3) , QR =

(
UR
DR

)
∈ (3, 1, 2, 1/3) ,

LL =

(
νL
lL

)
∈ (1, 2, 1,−1) , LR =

(
νR
lR

)
∈ (1, 1, 2,−1) , (2.3)

where the capital letters Q, U , D, and L denote quarks or leptons of any generation. Given

the fermion assignment, at least one spin-zero bidoublet, φ, with the assignment (1, 2, 2, 0),

is needed to generate fermion masses. The LR model is called minimal [60] if just one

bidoublet is used such that the model is parity-invariant before gauge-symmetry breaking,

but CP is broken both explicitely and spontaneously.

At some high-energy scale above the electroweak scale the extended gauge-group of

the LR model should be broken down to the SM gauge-group. In order to achieve this,

additional spin-zero fields are employed. In the version of the minimal LR model (mLRSM)

we will discuss here, cf. [60, 66], this is done with two triplets ∆L,R belonging to (1, 3, 1, 2)

– 6 –
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and (1, 1, 3, 2), respectively. The spin-zero fields can be written in the form

φ =

(
φ0

1 φ+
2

φ−1 φ0
2

)
, ∆L,R =

(
δ+
L,R/
√

2 δ++
L,R

δ0
L,R −δ+

L,R/
√

2

)
. (2.4)

With this definition of the fields the parity transformation is equivalent to changing the (L,

R) indices of all fields to (R, L) and letting φ → φ†. Among other things this symmetry

implies that the coupling constants of the two SU(2) gauge-groups are equal.

In order to achieve the breaking of both the gauge symmetries and the parity symmetry,

the neutral components of the spin-zero fields are assumed to acquire vacuum expectation

values (vevs). First, the symmetry group SU(3)c × SU(2)L × SU(2)R ×U(1)B−L is broken

to down to the SM gauge group, SU(3)c × SU(2)L × U(1)Y by the vev 〈∆R〉 = vR at a

scale of several TeV. This gauge-symmetry breaking entails also the breaking of the parity

symmetry. The vev vR sets the scale of the masses of the additional gauge bosons, W±R
and ZR, of the SU(2)R gauge group. In order for the mLRSM to satisfy the experimental

bounds coming from K- and B-meson mixing, the mass of the right-handed W±R boson is

constrained to MWR
≥ 3.1 TeV [67]. At lower energies, electroweak symmetry breaking is

achieved by the vevs of the bidoublet φ. Lastly, the vev 〈∆L〉 = vL gives rise to a Majorana

mass term for the left-handed neutrinos. This implies that this vev should not be much

larger than the scale of the neutrino mass, vL . O(eV). The vev vL and its phase θL,

however, do not enter in the terms in the Lagrangian in eq. (1.1) which are important

for hadronic EDMs. Therefore, they will not play a role in any of our calculations below.

Explicitly, the spin-zero fields acquire the following vacuum expectation values with two

observable CP -violating phases, which by convention, are put into the vev of the second

doublet and of ∆L [60, 66]:

〈φ〉 =

(
κ 0

0 κ′eiα

)
, 〈∆L〉 =

(
0 0

vLe
iθL 0

)
, 〈∆R〉 =

(
0 0

vR 0

)
. (2.5)

The vevs κ, κ′ set the scale of the masses of the W±L and ZL gauge bosons of the SU(2)L
gauge group. We have

√
2
√
κ2 + κ′2 = v ' 246 GeV . (2.6)

CP violation in the quark sector of the mLRSM arises from a number of phases. From

explicit and spontaneous CP breaking in the Higgs potential, the CP -violating phase α of

eq. (2.5) is generated [66]. Secondly, additional phases will appear in the quark mixing

matrices VL and VR. The matrix VL of the left-handed quarks, which is identical to the

CKM matrix of the SM, contains one observable phase. Similarly, a right-handed analogue

of the CKM matrix is produced when the quark mass-eigenstates are not aligned with the

SU(2)R eigenstates, which will be the case in general. In addition to the KM phase in

VL, there are then six additional phases in VR. However, in order to produce the correct

pattern of quark masses the model parameters have to be tuned in such a way that there

is an approximate relation between the two quark mixing matrices and their phases [68].

– 7 –
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Having discussed the model we are now ready to integrate out the heavy fields and

derive the dimension-six CP -odd operators produced at the electroweak scale that are

relevant for the effective Lagrangian in eq. (1.1). The phases in VL and VR, together

with the phase α, produce a number of CP -violating operators at the electroweak scale.

However, just one of these operators is generated at tree level, while the others are induced

at the one-loop level. Hadronic EDMs in the mLRSM are therefore dominated by this

single operator. For a more detailed discussion we refer to appendix A and refs. [69, 70].

Below the scale of the new physics, this dominant interaction takes the form of the following

gauge-invariant Lagrangian [23, 71],

LLR
∣∣
µ.vR

= Ξ1(iϕ̃†Dµϕ)(uRγ
µdR) + h.c. ,

Ξ1 =
2

v2

κκ′

v2
R

V ud
R eiα ' − 2

v2
sin ζ V ud

R eiα , (2.7)

where ϕ corresponds to the SM Higgs-doublet (see appendix A), ϕ̃ = iτ2ϕ
∗, and µ .

vR indicates the scale where the above effective Lagrangian describes the dominant CP

violation in this model. Furthermore, sin ζ ' −κκ′/v2
R is the angle describing the mixing

between the W±L and W±R bosons, see, for instance, ref. [60]. After electroweak symmetry

breaking, this operator becomes in the unitary gauge

LLR
∣∣
µ∼v = − gv2

2
√

2

[
Ξ1 uRγ

µdRW
+
Lµ + h.c.

](
1 +

h

v

)2

, (2.8)

where h is the lightest Higgs boson of the model, i.e., it corresponds to the 126 GeV spin-

zero resonance discovered at the LHC [72, 73].

The above interaction is essentially a coupling of the W±L boson to right-handed quarks.

This interaction is generated because both W±L and W±R interact with the bidoublet φ,

as this field is charged under SU(2)L and SU(2)R. Through their interactions with the

bidoublet, W±L and W±R effectively mix among each other. Thus, after integrating out the

heavy W±R boson, the remaining W±L boson obtains a (small) coupling to right-handed

fields in the form of the operator in eq. (2.8).

The operator in eq. (2.7) remains invariant under QCD renormalization-group evolu-

tion. Therefore we can trivially lower the energy to the electroweak scale. In order to move

to even lower energies, we need to integrate out the heavy SM fields. Integrating out the

W±L and Higgs fields, we obtain, just below the mass of the W±L boson,

LLR
∣∣
µ.mW

= −i Im
(
V ud∗
L Ξ1(MW )

) (
uRγ

µdR dLγµuL − dRγµuR uLγµdL
)

+ . . . , (2.9)

where the dots denote suppressed operators. The resulting four-quark operator is affected

by QCD corrections and, in fact, mixes with a second operator which has the same Lorentz

but different color structure. At a scale where perturbative QCD is still valid, well above

the chiral scale Λχ ∼ 1 GeV, we obtain,

LLR
∣∣
µ∼Λχ

= −iη1 Im
(
V ud∗
L Ξ1(MW )

) (
uRγ

µdR dLγµuL − dRγµuR uLγµdL
)

(2.10)

−iη8 Im
(
V ud∗
L Ξ1(MW )

) (
ūRγ

µtadR d̄LγµtauL − d̄RγµtauR ūLγµtadL
)

+ . . . ,
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where η1 = 1.1 and η8 = 1.4 are factors appearing due to QCD evolution [28]. As these

four-quark operators contribute to hadronic EDMs, their coefficients can be bounded by

the upper limit on the neutron EDM. This gives v2Im
(
V ud∗
L Ξ1(MW )

)
≤ 8 · 10−5, see

section 6.2. A stronger bound was found in ref. [60], but a a recent χPT analysis indicated

that the strength of this upper bound has been overestimated [74]. In any case, in the

mLRSM, the dominant CP -violating contribution to the effective Lagrangian in eq. (1.1)

at the chiral scale is given by the combination of four-quark operators in eq. (2.10).

2.3 The aligned two-Higgs-doublet model

Two-Higgs-doublet models (2HDMs) are among the simplest extensions of the SM. Among

other features they provide an interesting source for non-KM CP violation, namely CP

violation induced by neutral and charged Higgs boson exchange, for reviews, see, e.g.,

refs. [75–77]. In these models the SM field content is extended by an additional Higgs

doublet. There are thus two doublets, Φ1 and Φ2, both transforming under SU(3)c ×
SU(2)L × U(1)Y as (1, 2, 1/2). The electroweak symmetry is broken by the vevs of the

neutral components of Φ1 and Φ2. One can always choose a so-called Higgs basis (see, for

instance, ref. [77]), in which only one of the doublets acquires a vev,

〈Φ1〉 = (0, v/
√

2)T , 〈Φ2〉 = 0 , (2.11)

where v =
√
v2

1 + v2
2 ' 246 GeV. In this basis the would-be Goldstone boson fields G0 and

G+ are contained in Φ1:

Φ1 =

(
G+

(v + S1 + iG0)/
√

2

)
, Φ2 =

(
H+

(S2 + iS3)/
√

2

)
. (2.12)

Thus, the physical spin-zero fields of the 2HDM consist of 3 neutral fields, S1,2,3, and one

charged field, H+. The neutral fields in the mass basis, ϕ0
1, ϕ

0
2, ϕ

0
3, are linear combinations

of the fields Si. The two sets of fields are related by an orthogonal 3 × 3 matrix R,

ϕ0
i = RijSj . In general, the Higgs potential of a 2HDM violates CP . As a consequence,

the ϕ0
i do not have a definite CP parity. The lightest of the fields ϕ0

i corresponds to

the 126 GeV spin-zero resonance discovered at the LHC [72, 73]. If the Higgs potential

conserves CP , then two of the ϕ0
i have CP parity +1, while the third one has CP parity

−1. In this case, the fields in the mass basis are traditionally denoted by h, H, A, where h

describes the lightest of the two scalar states. For the sake of simplicity, we shall use here

the notation (ϕ0
i ) = (h, H, A) also in the case of Higgs sector CP violation, when h, H,

and A no longer have a definite CP parity.

The most important contributions to EDMs arise from the interactions of the spin-zero

fields with fermions. The most general Yukawa Lagrangian in the quark sector that obeys

the SM gauge symmetries is given by

−LY ′ =

√
2

v

[
Q̄′L(M ′dΦ1 + Y ′dΦ2)D′R + Q̄′L(M ′uΦ̃1 + Y ′uΦ̃2)U ′R + h.c.

]
. (2.13)

Here Q′L, U ′R, and D′R denote the SU(2)L quark doublet and singlets, respectively, in the

weak-interaction basis, M ′u,d and Y ′u,d are complex 3× 3 matrices; M ′u,d are the quark mass

matrices to which Y ′u,d, in view of having chosen the Higgs basis, do not contribute.
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So far we have discussed a general 2HDM. The requirement for restricting these models

comes from the fact that in its general form the 2HDM generates tree-level flavor-changing

neutral-currents (FCNCs) [75–77]. One way to make sure these tree-level FCNCs are

absent is to impose a Z2 symmetry on the model which may be softly broken by the Higgs

potential [75–77]. An alternative and more general way is to assume that the matrices M ′q
and Y ′q (q = u, d) are, at some (high) scale, proportional to each other and can therefore

be simultaneously diagonalized [61]:

Yd = ςdMd , Yu = ς∗uMu , (2.14)

where Mu,d are the real diagonal quark mass matrices and ςu and ςd are complex num-

bers. The model using this assumption is called the aligned two-Higgs doublet model

(a2HDM) [61]. This is similar to the hypothesis of ‘minimal flavor violation’ [78–80].

In the mass basis both for the quark and the Higgs fields, one obtains from eq. (2.13),

using eq. (2.14), the Yukawa interactions of the quark and the physical Higgs fields H±

and ϕ0
i :

−LY =

√
2

v
H+Ū

[
ςdVMdPR − ςuMuV PL

]
D

+
1

v

3∑
i=1

[
yiuϕ

0
i ŪLMuUR + yidϕ

0
i D̄LMdDR

]
+ h.c. , (2.15)

where V is the CKM matrix and PR,L = (1±γ5)/2. The reduced Yukawa couplings yiu and

yid of the neutral Higgs bosons are given in terms of the complex parameters ςu,d and the

matrix elements of the 3× 3 real orthogonal Higgs mixing matrix R (see above) by [61]:

yiu = Ri1 + (Ri2 − iRi3)ς∗u , (2.16)

yid = Ri1 + (Ri2 + iRi3)ςd . (2.17)

The orthogonality of R implies

3∑
i=1

Re yiq Im yiq′ = rq′Im (ς∗q ςq′) , (2.18)

where ru = −1, rd = 1. The Yukawa couplings to leptons are analogous to those of

the down-type quarks. Resulting CP -violating effects involving leptons effects will be

commented on in section 5.1 and in appendix B.

The interactions in eq. (2.15) and the couplings in eqs. (2.16) and (2.17) exhibit several

interesting features. a) The exchange of a charged Higgs boson between quarks transports,

apart from the KM-phase that plays no role in the discussion below, also the CP -violating

phases of ςu,d. These phases induce, for instance, flavor-diagonal CP -odd four-quark op-

erators already at tree-level of the type (ūd)(d̄iγ5u), where u (d) denotes any of the up-

type (down-type) quarks, with operator coefficients proportional to Im(ς∗uςd). b) If the

Higgs potential violates CP , the neutral Higgs states are, as mentioned, no longer CP

eigenstates and their exchange induces, for instance, flavor-diagonal CP -odd four-quark

operators (q̄q)(q̄′iγ5q
′), (q, q′ = u, d) at tree level, in particular the operators (q̄q)(q̄iγ5q).
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c) If the (tree level) Higgs potential of the a2HDM is CP -invariant, neutral Higgs exchange

nevertheless induces CP -odd operators of the type (ūu)(d̄iγ5d) if Im(ς∗uςd) 6= 0. Features a)

and c) distinguish the a2HDM from 2HDM with a Z2 symmetry that is (softly) broken by

CP -violating Higgs potential, cf., for instance refs. [81, 82].

As already mentioned above, the lightest neutral Higgs boson h is to be identified

with the 126 GeV spin-zero boson discovered at the LHC. The experimental analysis of

this resonance does not (yet) prove that it is a pure scalar, but the data indicate [83, 84]

that a possible pseudoscalar component of this state must be smaller than the scalar one.

Therefore, we make the following simplifying assumptions:

(i) R11 → 1 , R12 → 0 , R13 → 0 ,

(ii) MH →M , MA →M . (2.19)

Assumption (i) amounts to assuming that the lightest Higgs boson h is a pure scalar,3 while

with (ii) we assume that the two heavier neutral Higgs bosons H and A are (nearly) mass-

degenerate. These assumptions are not meant to single out a particular phenomenologically

or theoretically favored version of the a2HDM. They just serve to simplify the dependence

of the quark and gluon (C)EDMs on unknown parameters of the model. In this way their

sizes can be compared.

We can now construct the relevant CP -violating operators up to dimension-six that are

generated at a high scale µ ∼ a few hundred GeV. Details of our analysis, which essentially

follows ref. [62], are given in appendix B. With the specifications in eq. (2.19) it turns out

that the dominant operators are the EDM and CEDM of the d quark, generated by two-

loop Barr-Zee diagrams [86] as shown in figure 2(a,b), and the Weinberg operator which is

generated by diagrams figure 2(c) with the exchange of a charged Higgs boson. The result-

ing (C)EDM of the d quark and the gluon CEDM dW are given in eqs. (B.8), and (B.13),

respectively. These three dipole moments depend, apart from the unknown Higgs boson

masses M and M+, on the common unknown factor Im (ς∗uςd) that signifies non-KM CP

violation. Using the renormalization-group equation for these dipole interactions [24–28]

we obtain the following /P/T effective Lagrangian at the scale µ = Λχ:

L/P/T = −dd(Λχ)

2
d̄iσµνγ5dFµν −

d̃d(Λχ)

2
d̄iσµνγ5tadG

a
µν

+
dW (Λχ)

6
fabcε

µναβGaαβG
b
µρG

c ρ
ν . (2.20)

In order to present the sizes of these dipole moments, we define dimensionless quantities

δd, δ̃d, and δW by

dd(Λχ) = eδd
m̄ Im (ς∗uςd)

v2
· 10−4 , d̃d(Λχ) = δ̃d

m̄ Im (ς∗uςd)

v2
· 10−4 ,

dW (Λχ) = δW
Im (ς∗uςd)

v2
· 10−4 , (2.21)

3The recent papers [82, 85] analyze EDMs in a 2HDM with a Z2 symmetry and a Higgs potential that

softly breaks this symmetry and violates CP . They take into account the possibility that the 126 GeV

resonance has a (small) CP -odd component.
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Figure 2. Examples of two-loop diagrams which contribute to the coefficients of the operators in

eq. (2.20). A single (double) solid lines denotes a light (heavy) quark, a dashed line corresponds to a

Higgs boson, and a wavy and a curly line depicts a photon and a gluon, respectively. Diagrams (a,b)

are Barr-Zee type diagrams contributing to the quark electric and chromo-electric dipole moment,

while diagram (c) contributes to the Weinberg operator.

300 500 700 900
M+ H GeVL

-0.1

0.2

0.4

Dipole moments

300 500 700 900
M H GeVL

-8

-6

-4

-2

2

Dipole moments

Figure 3. The dimensionless dipole moments δd, δ̃d, and δW , defined in eq. (2.21), at the scale Λχ
as functions of the charged Higgs-boson mass M+ (left plot) and of the mass M of the neutral Higgs

bosons H and A. The blue (solid) and red (dashed) lines correspond to δd and δ̃d (we take gs > 0),

respectively, and the brown (dotted) line corresponds to δW . For the parameter specifications in

eq. (2.19) there is no contribution to δW from the neutral Higgs bosons.

where m̄(Λχ) = 4.8 MeV [63]. The dimensionless moments are given as functions of the

mass M+ of H± and of the mass M of the neutral Higgs bosons H and A in figure 3.

The plots in figure 3 show that the parameter specifications in eq. (2.19) imply that

the dominant contribution to the d-quark EDM and to the gluon CEDM dW is due to

charged Higgs boson exchange. In contrast, the contribution of H± to the d-quark CEDM

is induced through renormalization-group running and is very small as compared to the

contribution of the Higgs bosons H and A to d̃d. The neutral Higgs bosons also contribute

to the d-quark EDM but not to dW , however, the largest part of dd(Λχ) arises when the

d-quark CEDM is renormalization-group evolved to lower energies.

For approximately equal masses of H,A, and the charged Higgs bosons,

M=MH'MA'M+, we find (numerically) the following Higgs-mass independent relations

between the dipole moments:

d̃d(Λχ) ' −7dd(Λχ)/e ' −20m̄dW (Λχ) . (2.22)

Of course, these relations apply only to a very small region in the parameter space of the

model. Different hierarchies could be realized. For example, if the charged Higgs boson is

significantly lighter than the neutral ones, the dominance of the d-quark CEDM is reduced.
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However, since there is no good reason to assume M+ �MH ≈MA, we will use eq. (2.22)

in what follows. Other hierarchies can be studied in similar fashion. Finally, we recall that

in non-supersymmetric 2HDMs with the symmetry breaking scale set by the electroweak

scale v, the masses of the Higgs bosons cannot exceed ∼ 1 TeV.

2.4 The MSSM

The minimal supersymmetric extension (MSSM) of the Standard Model is another popular

SM extension that is theoretically well motivated and allows for non-KM CP violation.

In general, the soft supersymmetry (SUSY) breaking terms contain many CP -violating

phases. Often the analysis of CP -violating effects is restricted to versions of the MSSM

that contain, apart from the KM phase, two additional reparametrization invariant phases,

which are usually chosen to be the phase of the µ term and a common phase of the trilinear

fermion-sfermion-gaugino interactions. Other SUSY CP scenarios are also discussed. For

a review, see ref. [87].

It has been known for a long time [88–91] that SUSY CP phases generate EDMs of

quarks and charged leptons and CEDMs of quarks at one loop by the exchange of charginos,

neutralinos, and gluinos between sfermions and fermions. The Weinberg operator is induced

at two loops by diagrams involving gluinos, squarks, and quarks [92]. Moreover, loop-

induced SUSY threshold corrections [93] and, in addition, sizable mixing between the two

CP -even and the CP -odd neutral Higgs bosons at one loop [94], which can occur for a

certain set of values in the SUSY parameter space, lead to CP -violating effects due to

neutral Higgs boson exchange. The latter effect induces two-loop (nominally three-loop)

Barr-Zee type contributions to the EDMs of quarks and leptons and to the CEDMs of

quarks [95–98] and additional two-loop contributions to the Weinberg operator. Two-loop

rainbow-like contributions to the (C)EDM of quarks were analyzed in [99, 100]. There is a

huge literature on SUSY-induced (C)EDMs that includes refs. [26, 93, 101–117].

Because the SUSY-induced (C)EDMs of quarks and leptons are quite large, the SUSY

particles must be heavy and/or the SUSY phases have to be small in order that the model

does not get in conflict with the existing experimental bounds on various EDMs (see below),

or cancellations between the various contributions to an atomic/electron EDM and to the

EDM of the neutron must occur [102–104, 113]. Another possibility is that flavour-blind

SUSY phases are absent and CP violation is associated with the SUSY Yukawa interactions,

which leads to small EDMs not in conflict with experimental bounds (cf., e.g., ref. [105]).

Non-observation of SUSY signatures at the LHC so far leads to the conclusion that

most of the SUSY particles must be quite heavy if they exist. The interpretation of the LHC

data depends of course on the specific SUSY scenario that is used for the data analysis. For

instance, the recent global fit [118, 119] indicates that the masses of the first and second

generation squarks and of the gluinos are above ∼ 2 TeV, while the masses of the charginos,

neutralinos, and third generation squarks are & 500 GeV. The lightest of the neutral Higgs

bosons is to be identified with the 126 GeV resonance, while the two heavier states H

and A and the charged Higgs boson are above 1 TeV. In scenarios that are in accord with

these fit results and assume that the SUSY breaking scale is significantly higher than the
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electroweak scale, the SUSY phases are nevertheless constrained by the experimental EDM

bounds [117].

A comprehensive compilation and analysis of SUSY-induced EDMs of the neutron,

deuteron, the Thallium (Tl) and Mercury (Hg) atoms was made in ref. [114]. (A sim-

ilar analysis, taking into account more independent SUSY CP phases, was performed in

ref. [115].) From this analysis follows that several SUSY CP scenarios [98, 120, 121] induce,

for valence u and d quarks, the following /P/T low-energy effective quark-gluon and photon

Lagrangian at the scale µ = Λχ:

L/P/T = −1

2

∑
q=u,d

(
dq(Λχ)q̄iσµνγ5q Fµν + d̃q(Λχ)q̄iσµνγ5taq G

a
µν

)
+
dW (Λχ)

6
fabcε

µναβGaαβG
b
µρG

c ρ
ν . (2.23)

In addition, CP -violating four-quark operators generated by loop-induced Higgs-boson me-

diated CP violation can be generated. Such operators can also be induced by one-loop box

diagrams involving SUSY particles [107], but these are subdominant effects.

The magnitudes and signs of the (C)EDMs of the u and d quarks and of the gluon

CEDM in eq. (2.23) depend on the masses of the SUSY particles, the sfermion-fermion-

gaugino mixing matrix elements, and on the SUSY CP phases. For certain sets of SUSY

scenarios that are phenomenologically viable, the low-energy effective Lagrangian can be

further specified. These scenarios include

a) Heavy SUSY spectrum with a common mass scale > 1 TeV and rather large

tanβ = v2/v1. The global fit [119] is in accord with 5 . tanβ . 30. In this case

the one-loop contributions to the d-quark (C)EDM dominate in eq. (2.23), cf., for

instance, ref. [109]. As to CP -violating four-quark operators: in view of tanβ . 30,

of the negative experimental results on SUSY signatures, and of the presently known

properties of the 126 GeV resonance (see section 2.3) we conclude that the coefficients

of such operators are rather small.

b) Heavy first and second generation sfermions, mf̃ > 10 TeV. In this case the contri-

butions to the quark and electron (C)EDMs are suppressed [101] and the dominant

contribution to eq. (2.23) is due to the Weinberg operator [109].

c) ‘Split SUSY’ [108]. Here also the third sfermion generation is very heavy, so that

sfermions and gluinos decouple from physics at the electroweak scale. In this case

the one- and two-loop quark CEDMs and the coefficient of the Weinberg operator are

tiny; i.e., the low-energy effective Lagrangian in eq. (2.23) contains only the EDMs

of the u and d quark that are generated, like the EDM of the electron, by two-loop

Barr-Zee type diagrams that involve charginos and neutralinos [108, 111]. In this

scenario there is a strong correlation between the magnitudes of the electron and

neutron EDM [111].

In summary, several scenarios are possible within the MSSM. However, it appears

most natural to us to consider in our analysis of the following sections all /P/T operators of
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eq. (2.23) — which is then similar to the a2HDM. Therefore, in the discussions below we

discuss the a2HDM in more detail and only briefly remark at the end of the corresponding

sections on the MSSM.

3 The chiral Lagrangian

Below the energy scale Λχ ∼ 1 GeV nonperturbative techniques are required to describe

hadronic interactions. The degrees of freedom of the effective field theory of QCD for

the two4 valence quark flavors, SU(2) Chiral Perturbation Theory (χPT), are pions (π),

nucleons (N) and photons (Aµ) (see, e.g., refs. [31–35]). The pions are the Goldstone bosons

associated with the spontaneous chiral symmetry breakdown SU(2)L×SU(2)R → SU(2)V .

The chiral SU(2)L×SU(2)R symmetry is only approximate and is explicitly broken by the

finite quark masses, the quark charges and, in our case, the effective /P/T operators.

The χPT Lagrangian contains all interactions between these fields which are allowed by

the symmetries of QCD. Chiral-invariant interactions involving pions always appear with

a derivative acting on the pion field and it is this property which gives χPT its consistent

power counting. Interactions involving the pion field without derivatives are induced by

the chiral-symmetry-breaking interactions in the QCD Lagrangian and are proportional to

the small chiral-breaking parameters. This explains the relative lightness of the pion whose

mass is proportional to the small average quark mass m2
π ∼ m̄.

We are interested in the effects of the /P/T operators appearing in the various scenarios

discussed in section 2. They all induce /P/T hadronic interactions, but the form of these

interactions differs for each scenario because the various /P/T operators transform differ-

ently under chiral and isospin rotations. Each interaction is accompanied by a low-energy

constant (LEC) determined by nonperturbative physics. In most cases considered here,

these LECs are unknown and, barring lattice QCD calculations, need to be estimated by a

model calculation. Reasonable estimates can be obtained by QCD sum rules [11] or naive

dimensional analysis (NDA) [29, 122]. In the case of the θ̄ term the LECs can be controlled

quantitatively, as we will discuss.

The hadronic Lagrangians for the dimension-four and -six operators have been con-

structed in refs. [39, 40]. In the next sections we discuss which hadronic operators are in-

duced by the low-energy effective Lagrangians eqs. (2.2), (2.10), (2.20), and (2.23). Among

the most important of these hadronic operators are the /P/T pion-nucleon interactions, which

provide long-range /P/T forces between nucleons. We discuss the /P/T pion-nucleon vertices

first. Afterwards we will study the EDMs of the neutron and proton which are not only

interesting by themselves but also are an important ingredient of light-nuclear EDMs, to

be discussed in subsequent sections.

3.1 Parity- and time-reversal-odd pion-nucleon interactions

Interactions between pions and nucleons that break P and T play an important role in the

calculation of the EDMs of nucleons and nuclei because they induce long-range /P/T forces.

4In this work we do not consider the strange quark explicitly which can be done by using SU(3) chiral

perturbation theory. We do not expect that effects of dynamical strange quarks exceed the uncertainties

given below.
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Historically, hadronic EDMs have often been discussed in terms of a one-boson-exchange

model in which it is assumed that P and T violation is induced by the following two5

nonderivative interactions:

L = ḡ0N̄π · τN + ḡ1N̄π3N . (3.1)

We discuss below for each scenario the (relative) sizes of the ḡi and whether additional

interactions should be taken into account.

3.1.1 The θ̄ scenario

The θ̄-term is the isospin-conserving element of the same chiral-symmetry breaking quark-

antiquark multiplet as the isospin-breaking component of the quark mass matrix — both

terms are connected by an axial SU(2) rotation. Therefore, all terms in the effective La-

grangian induced by the θ̄-term are linked to terms arising from the so-called strong isospin

breaking, i.e., isospin-breaking resulting from the strong interactions [7, 39]. The induced

leading-order term in the pion-nucleon sector of the effective Lagrangian is proportional to

the quark-mass induced part of the proton-neutron mass difference (mn −mp)
strong [123].

It gives the leading contribution to the coupling constant ḡθ0 [39, 51, 53],

ḡθ0 =
(mn −mp)

strong(1− ε2)

4Fπε
θ̄ = (−0.018± 0.007) θ̄ , (3.2)

where (mn −mp)
strong = (2.6± 0.85) MeV [124, 125], ε ≡ (mu−md)/(mu+md) = −0.35±

0.10 [63], and Fπ = 92.2 MeV have been used.

The contributions to the coupling constant ḡθ1 induced by the θ̄-term can be traced

back to the emergence of pion-tadpole terms in the pion-sector Lagrangian, which have

to be removed by field redefinitions [39, 51]. These field redefinitions generate the leading

contribution to ḡθ1 given by [39, 51, 53]:

ḡθ1 =
2c1(δm2

π)strong(1− ε2)

Fπε
θ̄ = (0.003± 0.002)θ̄ , (3.3)

where the LEC c1 = (−1.0± 0.3) GeV−1 [126] is related to the nucleon σ-term and where

(δm2
π)strong ' (εm2

π)2/(4(m2
K − m2

π)) [127] is the strong contribution to the square of

the mass splitting between charged and neutral pions. The uncertainty in eq. (3.3) has

been increased to account for the contribution to ḡθ1 by another independent term [39] in

the next-to-next-to-leading-order pion-nucleon Lagrangian [128] with an LEC of unknown

strength, which here has been conservatively bounded by its NDA estimate. In fact, a

calculation based on resonance saturation predicts only one third of this estimate as an

upper bound [51].

In summary, the coupling constant ḡθ1 is suppressed with respect to the coupling con-

stant ḡθ0 by the ratio ḡθ1/ḡ
θ
0 = −0.2 ± 0.1 [51]. This suppression, however, is less than the

NDA prediction |ḡθ1/ḡθ0| = O(εm2
π/Λ

2
χ) ' 0.01 [39].

5In phenomenological studies a third interaction ḡ2N̄π3τ3N is often included as well, but this interaction

only appears at higher orders than those considered here for all dimension-four and -six /P/T operators [39, 40].
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3.1.2 The minimal left-right symmetric scenario

As discussed in section 2.2, in the mLRSM the most important /P/T contributions at low

energies are due to the four-quark interactions in eq. (2.10). The chiral Lagrangian induced

by these operators has been constructed in ref. [40] and we recall the main results here.

First of all, the two four-quark interactions have the same chiral properties and induce

hadronic interactions of identical form (although the LECs, of course, will be different).

We therefore use Im Ξ to collectively denote η1,8 Im
(
V ud∗
L Ξ1

)
and denote the associated

four-quark operator as the four-quark left-right operator (FQLR).

The FQLR is a chiral- and isospin-breaking interaction, however it does not transform

under chiral symmetry as any term in the conventional QCD Lagrangian, but instead

transforms in a more complicated fashion [40]. The /P/T LECs induced by the FQLR are

therefore not linked to any strong LECs as was the case for the θ̄ term. Unfortunately, this

implies that we need to resort to different techniques to estimate the LECs. We will use

NDA because other methods, such as QCD sum rule estimates are, to our knowledge, not

available. Nevertheless, even without detailed knowledge of the LECs, considerations based

on chiral symmetry give a lot of information on the hierarchy of the hadronic interactions.

Because the FQLR violates isospin symmetry it does not contribute to ḡLR
0 directly.

Instead, it contributes to isospin-violating LECs in two ways. First of all, a pion tadpole

is induced. However, due to the complicated chiral properties of the FQLR, this tadpole is

associated with a three-pion vertex [40] which, in the so-called σ-parametrization of SU(2)

χPT, see e.g., ref. [129], reads

LLR = ∆̄LRFππ3

(
1− π2

2F 2
π

)
. (3.4)

In addition, the FQLR induces a direct contribution to ḡLR1 . The sizes of the LECs can be

estimated by NDA:

|∆̄LR| = O(F 2
πΛ2

χIm Ξ) ' (0.01 GeV4)Im Ξ , |ḡLR
1 | = O(FπΛχIm Ξ) ' (0.1 GeV2)Im Ξ .

(3.5)

Just as for the θ̄ term, the tadpole can be removed using field redefinitions. However,

differently from the θ̄ term, a three-pion vertex is left behind (see eq. (3.8)). Moreover, the

removal of the tadpole induces an additional contribution to ḡLR
1 proportional to ∆̄LR:

ḡLR
1 → ḡLR

1 + ḡLR ′
1 , ḡLR ′

1 = −4c1∆̄LR

Fπ
. (3.6)

Since c1 = O(1/Λχ), the additional contribution is formally of the same order as the

original term. However, numerically it might be somewhat larger because 4c1 is bigger

than expected from NDA. In addition, a first non-vanishing contribution to ḡLR ′
0 appears,6

also proportional to ∆̄LR:

ḡLR ′
0 = −(mn −mp)

strong∆̄LR

2m2
πFπ

. (3.7)

6If the θ̄ term is removed by the Peccei-Quinn mechanism, this contribution to ḡLR ′
0 would be absent [130].

Because it is small anyway this has no consequences for our analysis.
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In conclusion, the relevant pionic and pion-nucleon interactions are given by

LLR = −∆̄LRπ3π
2

2Fπ
+ ḡLR ′

0 N̄π · τN + (ḡLR
1 + ḡLR ′

1 )N̄π3N . (3.8)

Because ḡLR ′
0 and ḡLR ′

1 both depend on the same LEC ∆̄LR, their ratio depends only on

known quantities:
ḡLR ′

0

ḡLR ′
1

=
(mn −mp)

strong

8c1m2
π

= −0.02± 0.01 . (3.9)

Unless ḡLR
1 and ḡLR ′

1 cancel to a high degree — which is not expected on any grounds —

the coefficient ḡLR ′
0 is much smaller [40] than the combination ḡLR

1 + ḡLR ′
1 which appears

in observables. From now on, we relabel ḡLR
1 + ḡLR ′

1 → ḡLR
1 and ḡLR ′

0 → ḡLR
0 , and take

|ḡLR
0 /ḡLR

1 | � 1. This result is in stark contrast with the θ̄ scenario where ḡθ̄0 is the dominant

interaction. This difference has important consequences for light-nuclear EDMs.

3.1.3 The a2HDM and MSSM scenarios

Next we discuss the hierarchy of pion-nucleon interactions which emerges in the scenario

of sections 2.3 and 2.4. In the a2HDM and MSSM scenarios we must compare the con-

tributions from the three operators appearing in eqs. (2.20) and (2.23). We focus first on

the a2HDM scenario because here we have some idea on the relative sizes of the quark

(C)EDMs and the Weinberg operator. After discussing the a2HDM, we consider briefly

how our findings might be altered in the MSSM.

The contributions from the qEDM to the pion-nucleon LECs are highly suppressed

because of the appearance of the photon which needs to be integrated out. As such, the

qEDM contributions are suppressed by the typical factor αem/π ∼ 10−3 and can be safely

neglected. Because the Weinberg operator conserves chiral symmetry, it cannot directly

induce the /P/T pion-nucleon couplings which break chiral symmetry [131]. Instead, an

additional insertion of the quark mass (difference) is required which implies, by NDA, that

the LECs scale as |ḡH
0 | = O(m̄Λχ dW ) and |ḡH

1 | = O(εm̄Λχ dW )| [46]. On the other hand,

the down quark CEDM in eq. (2.20) can induce the pion-nucleon couplings directly such

that, for this source, |ḡH
0,1| = O(Λχ d̃d) [46]. Together with the observation that m̄|dW |

is about an order of magnitude smaller than |d̃d| in the model under investigation, we

conclude that the pion-nucleon couplings are dominated by the qCEDM.

To check whether the NDA estimate is reasonable we compare it to results obtained

in refs. [11, 132] where the pion-nucleon LECs were investigated in the framework of QCD

sum rules. It was found that7

ḡH
1 = −(2+4

−1 GeV) d̃d , ḡH
0 ' (0.5± 1) GeV d̃d . (3.10)

The coupling ḡH
1 is somewhat bigger than the NDA estimate but not in disagreement. The

calculation of ḡH
0 has a relatively larger uncertainty (even an uncertain sign) which is also

7It should be noted that these results assume a Peccei-Quinn mechanism to remove the θ̄ term. This

also shifts the qCEDM contributions to pion-nucleon LECs. However, the order of magnitude stays the

same. Since we use these results as a sanity check of the NDA estimate, this poses no real problem.
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harder to quantify [132]. The size of ḡH
0 is somewhat smaller than ḡH

1 , and it is in agreement

with NDA.

Considering the large uncertainties in these estimates, from now on we will take for

the a2HDM scenario that |ḡH
0 | ' |ḡH

1 | as indicated by NDA. However, there is a significant

uncertainty involved and the only way to improve the situation is, most likely, a direct

lattice calculation.

The situation in the MSSM is similar. Unless the Weinberg operator is larger than

the u and d quark CEDMs, also in this scenario the pion-nucleon LECs are dominated by

the qCEDM contributions. The u-quark CEDM is now expected to be significant as well

which means that the result in eq. (3.10) should be slightly altered: d̃d in the expression

for ḡ1 (ḡ0) should be replaced by d̃d− d̃u (d̃d + d̃u). Nevertheless, we expect again that the

pion-nucleon LECs are of similar size, with the possibility that |ḡMSSM
1 | is slightly larger

than |ḡMSSM
0 |. Even in the case that the Weinberg operator is much larger than the quark

CEDMs, a large hierarchy between ḡMSSM
0 and ḡMSSM

1 is not expected to appear. The NDA

estimates given above tell us that the LECs are of similar size, apart from a possible small

suppression of ḡMSSM
1 due to insertion of the quark-mass difference ε. In what follows we

therefore take |ḡMSSM
0 | ' |ḡMSSM

1 |.

3.2 The EDMs of the neutron and proton

Now that we have discussed the /P/T pion-nucleon interactions for each of the scenarios we

turn to the calculation of the nucleon EDMs. The nucleon EDMs obtain contributions

from one-loop diagrams involving the /P/T pion-nucleon vertices in eq. (3.1). However, these

diagrams are ultraviolet-divergent and renormalization requires counterterms to absorb

these divergences and the associated scale dependence. Such counterterms appear naturally

in χPT in the form of /P/T nucleon-photon vertices [41–48],

LNγ = −2 N̄
(
d̄0 + d̄1τ3

)
SµN vνFµν , (3.11)

in terms of the nucleon spin Sµ = (0 , ~σ/2)T and velocity vµ = (1 , ~0)T in the nucleon

restframe. These counterterms appear in all scenarios discussed here, but their sizes, of

course, vary depending on the scenario under investigation.

Before discussing the new LECs d̄0,1, let us first discuss the calculation of the nucleon

EDM in terms of /P/T interactions in eqs. (3.1) and (3.11).8 This calculation has been

performed in SU(2)L × SU(2)R heavy-baryon χPT up to next-to-leading order in refs. [43,

46, 47] (for SU(3)L × SU(3)R results, see refs. [42, 45, 48]) and gives for the neutron (dn)

and proton EDM (dp)

dn = d̄0 − d̄1 −
egAḡ0

8π2Fπ

(
ln
m2
π

m2
N

− πmπ

2mN

)
,

dp = d̄0 + d̄1 +
egA

8π2Fπ

[
ḡ0

(
ln
m2
π

m2
N

− 2πmπ

mN

)
− ḡ1

πmπ

2mN

]
, (3.12)

8Contributions from the three-pion vertex ∆̄LR in eq. (3.8) to the nucleon EDM vanish up to next-to-

leading order [40].
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where e > 0. Furthermore, gA ' 1.27 is the strong pion-nucleon coupling constant [63],

mN the nucleon mass, and the divergence has been absorbed into the counterterms. The

leading loop result reproduces the famous result obtained in ref. [7], where current algebra

techniques were applied.

The dependence of the nucleon EDMs on the LECs d̄0,1 implies that considerations

based on chiral symmetry alone cannot tell us the sizes of these EDMs. Even in the θ̄

scenario, in which we have relatively precise knowledge of the LECs ḡ0,1 (see eqs. (3.2)

and (3.3)), the exact dependence of dn and dp on θ̄ is unclear due to the unknown finite

parts of d̄0,1. The same holds, of course, for the other scenarios, where not even the LECs

ḡ0,1 are known precisely. Thus, the EDM results in the nucleon case alone are of limited use

to get information on the physics that generated them. The strength of our methods will

become much more visible when two-nucleon contributions, i.e., the cases of the deuteron

and tri-nucleon EDMs, will be investigated in section 4. To get quantitative information

on the nucleon EDMs other techniques are necessary. Let us now, for each of the scenarios,

discuss the sizes of the nucleon EDMs.

3.2.1 The θ̄ scenario

By inserting the values of ḡ0,1 from eqs. (3.2) and (3.3) into eq. (3.12) it is possible to

evaluate the loop contributions to the nucleon EDMs:

dθ̄,loop
n = (−2.5± 0.9) · 10−16 θ̄ e cm , dθ̄,loop

p = (2.8± 0.9) · 10−16 θ̄ e cm . (3.13)

This sets the scale for the nucleon EDM but the actual numbers can change due to the

LECs d̄0,1. The sizes of the LECs can be estimated by NDA. This yields

|d̄ θ̄0,1| = O
(
eθ̄
m2
π

Λ3
χ

)
' 3 · 10−16 θ̄ e cm , (3.14)

which is of similar size as the loop contributions. By combining a χPT calculation with

lattice QCD data, it recently became possible to compute the total nucleon EDM (loop

and tree-level contributions) [48]. It was found that9

dθ̄n = (−2.9± 0.9) · 10−16 θ̄ e cm , dθ̄p = (1.1± 1.1) · 10−16 θ̄ e cm , (3.15)

which is the result we will use in what follows. For the deuteron EDM, an important

quantity is the sum of the nucleon EDMs which is

dθ̄n + dθ̄p = (−1.8± 1.4) · 10−16 θ̄ e cm , (3.16)

with a significant uncertainty.

9Lattice data at lower pion masses, where the chiral extrapolations will be more reliable, are expected

to become available soon. A new look at the single-nucleon EDM predictions is work in progress.
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3.2.2 The minimal left-right symmetric scenario

In the case of the mLRSM the situation is far more uncertain than for the θ̄ term. Because

ḡLR
0 is significantly suppressed (see eq. (3.9)), this implies that the loop contributions

proportional to ḡLR
0 are actually subleading. Up to next-to-leading order the neutron

EDM does not depend on ḡLR
1 , and therefore in ref. [74] the calculation was extended to

next-to-next-to-leading order. It was concluded that both the neutron and proton EDM

obtain dominant contributions from the LECs d̄0,1, while the loop contributions are an

order of magnitude smaller. Unfortunately, the exact sizes of the EDMs as function of the

fundamental mLRSM parameter Im Ξ is rather uncertain. There exists, to our knowledge,

no reliable model calculation. Therefore we cannot do better than NDA, which gives

|dn,p| = O
(
eIm Ξ

F 2
π

Λχ

)
' (10 MeV) eIm Ξ , (3.17)

with an unknown sign and a large uncertainty in its magnitude.

3.2.3 The a2HDM and MSSM scenarios

Both within the a2HDM and the MSSM, the nucleon EDMs obtain contributions from

each of the three operators in eqs. (2.20) and (2.23), respectively. For the pion-nucleon

interactions we were fortunate that one of the operators gave dominant contributions which

simplified the analysis. For the nucleon EDM we do not have this advantage because the

qEDM and Weinberg operator induce the tree-level LECs d̄0,1 without additional suppres-

sions [46]. As a consequence, we need to study all three operators.

To be specific we start the discussion with the a2HDM. The discussion in section 3.1.3

tells us that the loop contributions to the nucleon EDMs are dominated by the qCEDM be-

cause the /P/T pion-nucleon LECs are suppressed for the qEDM and Weinberg operator. Us-

ing the NDA estimate for ḡ0 (in good agreement with the QCD sum rules result [132]) gives

|dH, loop
n | ' −|dH, loop

p | ' (0.7) ed̃d , (3.18)

in terms of the down-quark CEDM d̃d. The tree-level terms d̄0,1 obtain contributions from

all operators. NDA tells us [46]:

∣∣dH, tree
n,p

∣∣ = O

(
dd,

ed̃d
4π

, Fπ edW

)
'
(
dd, (0.1) ed̃d, (0.1 GeV) e dW

)
, (3.19)

which implies that the loop contributions of the qCEDM are larger than its tree-level con-

tributions. The approximate hierarchy of the dipole moments d̃d ' −7 dd/e ' −20(m̄dW )

(with m̄ ' 5 MeV) obtained in section 2.3, shows that the nucleon EDMs obtain contribu-

tions comparable in magnitude from all three operators, with perhaps a slight dominance of

the Weinberg operator (although this is questionable, see the discussion below). Of course,

these estimates are very rough and can in no way be used to make a definite statement

about the exact sizes of the nucleon EDMs in the a2HDM scenario that we investigate.

They only provide an approximate scale for the EDMs.
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The nucleon EDM induced by the qEDM, qCEDM, and Weinberg operator has been

investigated extensively in the literature (see refs. [11, 12] for reviews). In particular, the

calculation for all three operators has been performed with QCD sum rules [11, 53, 131, 133].

The authors of these references obtained, in our notation,10,11,12

dn = (1± 0.5)
(

1.4 dd − 0.55 ed̃d

)
± (0.02 GeV) edW , (3.20)

with an unspecified, but significant error (and sign) on the coefficient of the Weinberg oper-

ator. The hierarchy between dd, d̃d, and dW then indicates that all operators contribute at

the same level to the neutron EDM. The qEDM and qCEDM results are in good agreement

with the chiral loop results and NDA. The result for the Weinberg operator is somewhat

smaller (see the discussion in ref. [131]) but, in view of the large uncertainties involved, the

estimates are not really in disagreement. The isoscalar combination dn + dp has also been

estimated with QCD sum rules [53],

dn + dp = (0.5± 0.3) dd − (0.2± 0.1) ed̃d ± (0.02 GeV) edW , (3.21)

with slightly smaller coefficients in front of the qEDM and qCEDM than in the case of the

neutron EDM.

To summarize, in the a2HDM scenario of section 2.3, the nucleon EDMs get contribu-

tions of roughly equal size from the d-quark EDM and CEDM and the Weinberg operator.

The rather large uncertainties in magnitude and sign of each of these contributions make

it impossible to obtain a firm prediction of the sizes of the nucleon EDMs. We conclude

that we cannot really do better than give a rough estimate of the combined contributions

which sets the scale for the sizes of both the neutron and proton EDM:

|dn,p| = O(e d̃d) , (3.22)

and we do not expect the nucleon EDMs to be larger than this estimate.

When switching to the MSSM, the above relations should include the dependence on

the u-quark (C)EDM. In the most general case one may expect comparable contributions

from the q(C)EDMs and the Weinberg operator to the nucleon EDMs. The above analysis

of the a2HDM would then roughly hold for the MSSM as well. However, the MSSM allows

for different hierarchies between the dipole operators as well, cf. the discussion at the end

of subsection 2.4. For example, in the ‘split SUSY’ scenario of ref. [108] the nucleon EDMs

would be given directly in terms of the quark EDMs.

3.3 A short intermediate summary

Before we proceed to the discussion of light-nuclear EDMs, let us briefly summarize what

we found so far. We have seen that the different scenarios of section 2 predict distinct

10As before, a Peccei-Quin mechanism was used to remove the θ̄ term.
11The difference between our d-quark CEDM d̃d and the one found in refs. [11, 133] is due to an explicit

factor of gs(Λχ) ' 2 that appears in the definition of the qCEDM in these references.
12A similar calculation was performed in ref. [134] which found somewhat smaller coefficients for the

qEDM and qCEDM. On the other hand, larger coefficients were found in ref. [135]. These differences show

that the uncertainties are large.
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hierarchies for the /P/T pion-nucleon interactions in eq. (3.1). Roughly, we find ḡθ̄1/g
θ̄
0 '

−0.2 for the θ̄ term [51], ḡLR
1 /ḡLR

0 ' −50 for the mLRSM [40], and |ḡH
0 | ' |ḡH

1 | and

|ḡMSSM
0 | ' |ḡMSSM

1 | in the a2HDM and MSSM scenarios (although |ḡH1 | might be somewhat

larger than |ḡH0 | [132]).

This information, however, does not lead to a solid prediction of the sizes of the neutron

and proton EDM apart from the expectation that, in all scenarios, they are of comparable

size. The lack of predictive power is mainly caused by the fact that the nucleon EDMs

obtain leading-order contributions from tree-level diagrams independent of the /P/T pion-

nucleon interactions. The situation is somewhat better for the θ̄ term (see ref. [48]) because

of lattice data, but the uncertainties, in particular for the proton EDM, are still significant.

Lattice efforts are underway to improve this situation. For the higher-dimensional BSM

sources little progress is expected in the near future.

A signal in a single EDM measurement would, of course, not point to its origin. The

above considerations imply that, at the moment, even a measurement of both the proton

and neutron EDM is not enough to disentangle the various scenarios [46] (although a

hint for the θ̄ term might be found). Additional measurements are therefore required,

and in the next sections we will argue that light-nuclear EDM experiments are excellent

probes for this task. In section 5 we discuss EDMs of heavier systems which provide

complementary information.

4 EDMs of light nuclei

The power of the χPT approach becomes much more manifest in few-nucleon systems.

First of all, the EDMs of light nuclei can be accurately calculated in terms of the /P/T

hadronic interactions. The associated nuclear uncertainties are much smaller than the

hadronic uncertainties appearing in the LECs themselves. Moreover, while the /P/T pion-

nucleon vertices only contribute to the nucleon EDM at the one-loop level, which brings in

a loop suppression and counterterms, light-nuclear EDMs depend already at tree-level on

the pion-nucleon vertices and counterterms only appear at subleading orders.

In refs. [50, 51] EFTs13 have been constructed with which controlled calculations of

light-nuclear EDMs can be performed. In fact, this has already been done for the EDMs

of the deuteron and tri-nucleon system. The calculations in refs. [50, 51] used a so-called

‘hybrid’ approach in which the nuclear wave functions were calculated using modern phe-

nomenological potentials while the /P/T potential and currents were calculated using chiral

EFT. Recently, these calculations have been repeated using chiral EFT for both the PT -

even and -odd parts of the problem [54, 55]. Although, the results of the hybrid and full

EFT calculations are very similar, the latter approach has the advantage that the nu-

clear uncertainty can be quantified by varying the cut-off parameters that appear in the

solution of the scattering equations. This gives us a quantitative handle on the nuclear

uncertainties which turn out to be small compared to the hadronic uncertainties in the /P/T

LECs themselves.

13The EFTs differ somewhat in their power counting, but the leading results are identical.
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Before going to the actual results a few comments are in order. Based on chiral symme-

try considerations, it was argued in ref. [50] that light-nuclear EDMs should be calculated

in terms of six LECs. So far we have only encountered four, namely the /P/T pion-nucleon

LECs ḡ0 and ḡ1 and the nucleon EDMs dn and dp.
14 The other two LECs introduced in

ref. [50] are associated with /P/T nucleon-nucleon contact interactions of the form

LNN = C̄1N̄N ∂µ(N̄SµN) + C̄2N̄τN · ∂µ(N̄SµτN) . (4.1)

For the θ̄ term and most of the higher-dimensional BSM operators discussed above these

contact interactions appear at high order in the chiral Lagrangians and their effects are

negligible compared to the one-pion exchange between nucleons proportional to ḡ0,1 [136].

However, for chiral-invariant sources such as the Weinberg operator, the /P/T pion-nucleon

LECs are suppressed and the terms in eq. (4.1) appear at the same order as ḡ0,1. Neverthe-

less, the terms in eq. (4.1) only play a marginal role as we will discuss in more detail below.

The three-pion vertex with LEC ∆̄LR appearing in eq. (3.8) was not considered in

ref. [50]. Although it has little consequences for the nucleon and deuteron EDMs, it intro-

duces a potentially important /P/T three-body interaction [40] which could affect the 3He

and 3H EDMs. This has not been taken into account so far.

4.1 The EDM of the deuteron

The EDM of the lightest bound nucleus, the deuteron, has been investigated in a number

of papers in recent years [49–51, 53, 55, 137–140]. From a theoretical point of view, the

deuteron is particularly interesting. Not only because it is a rather simple nucleus which

can be accurately described, but also because its spin-isospin properties ensure that the

deuteron EDM has rather distinctive properties.

At leading order in the EFT, the deuteron EDM obtains two contributions. The

first one is simply the contribution from the constituent nucleon EDMs which is trivially

evaluated as dn + dp. The second contribution is due to the exchange of a single pion

between the nucleons involving a /P/T pion-nucleon vertex (i.e., ḡ0 or ḡ1) and the coupling

of the external photon to the proton charge. All calculations are consistent and here we

quote the central value and uncertainty of the chiral EFT result [54, 55]:

dD = dn + dp +
[
(0.18± 0.023) ḡ1 + (0.0028± 0.0003) ḡ0

]
e fm , (4.2)

which is almost independent of ḡ0. This can be understood from the following reasoning:

the deuteron ground state is a 3S1 state with a small 3D1 admixture. After a pion ex-

change involving a leading ḡ0 vertex which conserves the total isospin, the wave function

obtains a small 1P1 component. Because the electric interaction with the proton charge is

spin-independent, it cannot return the wave function to its 3S1-3D1 ground state and the

contribution vanishes. By exactly the same argument the leading contributions from the

NN contact interactions in eq. (4.1) vanish for the deuteron [49].

14In this section we will treat the EDMs dn and dp as effective parameters. The reason is that the part

of dn,p depending on ḡ0,1 cannot be isolated from the tree-level LECs d̄0,1 in a model-independent way.
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The systematic nature of the EFT approach used in refs. [50, 51] allows the calculation

of higher-order corrections, for example, due to two-pion-exchange diagrams [136] or two-

body currents. Such corrections give rise to the small dependence of dD on ḡ0. We now

turn to the implications of this result for the various scenarios.

4.1.1 The θ̄ scenario

In this scenario the deuteron EDM can be given as a function of θ̄. It follows from

eqs. (3.2), (3.3), (3.16), and (4.2) that

dθ̄D = [(−1.8± 1.4) + (0.55± 0.36± 0.054)− (0.05± 0.02± 0.006)] · 10−16 θ̄ e cm , (4.3)

where the first term is the contribution from the nucleon EDMs and the second and third,

respectively, from the two-body contribution proportional to ḡθ̄1 and ḡθ̄0. The first error

of the coefficients is due the hadronic uncertainty in the LECs (see eqs. (3.2) and (3.3)),

while the second error of the last two terms is due to the nuclear uncertainty. The hadronic

uncertainty is significantly larger than the nuclear uncertainty.

We can learn a few things from eq. (4.3). First of all, the deuteron is most likely

dominated by the nucleon EDMs, although the uncertainties are still too large to say this

with full confidence [50]. More input from lattice calculations is needed to improve the

situation. Second, when measurements of dn, dp, and dD will be available, the relation

dθ̄D − dθ̄n − dθ̄p = (5.0± 3.7) · 10−17 θ̄ e cm (4.4)

will be a promising and relatively precise method to directly extract the value of θ̄ from

experiments [51]. The existence of the θ̄ term can then be tested in several ways. One can

compare the experimental value of dn and/or dp to lattice calculations. A more robust test,

independent of lattice results, would be the measurement of the 3He or 3H EDM whose

dependence on θ̄ can be firmly predicted. We will discuss this in section 4.2.1.

4.1.2 The mLRSM scenario

The mLRSM scenario is in general more uncertain than the θ̄ term. Because ḡLR
0 /ḡLR

1 � 1

(see eq. (3.9)) we can safely ignore the ḡ0 term in eq. (4.2). Inserting the NDA estimates15

given in eqs. (3.5) and (3.17) into the expression for the deuteron EDM, we obtain∣∣dLR
D

∣∣ =
∣∣(10 MeV) eImΞ ± (100 MeV) eImΞ

∣∣ , (4.5)

where the first term is due to the nucleon EDMs and the second term is the

two-body contribution.

These rough estimates tell us that the two-body contribution to the dEDM is about an

order of magnitude larger than the sum of the nucleon EDMs. Without detailed information

on the LECs (for which input from lattice calculations is required) this statement cannot

be made much more precise. Nevertheless, the difference between the ratios of deuteron-to-

nucleon-EDMs for the θ̄ and the mLRSM scenario tell us that a deuteron EDM experiment

15Note that the size of ḡLR
1 might be somewhat larger than the NDA estimate due to the large size of the

term 4c1, see the discussion after eq. (3.6). The estimate used here is conservative.
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would be complementary to nucleon EDM experiments. In particular, a large deuteron-

to-nucleon EDM ratio would be indicative of BSM physics [49, 53], in particular of the

mLRSM scenario.

4.1.3 The a2HDM and MSSM scenarios

The situation for the a2HDM is somewhat similar to that of the mLRSM. The ḡH
0 term in

eq. (4.2) can be neglected since we expect |ḡH
0 | ' |ḡH

1 |, while the coefficient in front of ḡH
0

is a hundred times smaller. Using the estimates from sections 3.1.3 and 3.2.3 gives

dH
D = ±(e d̃d) − (2+4

−1)e d̃d , (4.6)

where the first term is due to the nucleon EDMs16 and the second term results from the

two-body contribution. The uncertainty of the two-body contribution is obtained from the

QCD sum rules estimate of ḡH1 [132]. The nuclear uncertainty is neglected since it is at

least an order of magnitude smaller.

In the a2HDM scenario the deuteron-to-nucleon EDM ratio lies between the θ̄ and

mLRSM scenarios discussed above. It can be expected that the deuteron EDM is a few

times bigger than the sum of the nucleon EDMs. However, it must be stressed that the

nucleon EDMs obtain contributions from three different BSM operators, cf. eq. (2.20).

Therefore, the accumulated uncertainty is significant. In particular the uncertainty associ-

ated with the Weinberg operator is large. Therefore, the conclusion |dH
D| > |dH

n +dH
p | might

be premature.

As discussed in section 3.1.3 also in the MSSM we expect |ḡMSSM
0 | ' |ḡMSSM

1 | which

means we can again neglect the ḡ0 term in eq. (4.2). However, in the MSSM it is even

harder to make a statement about the size of dD with respect to dn,p. In case the qCEDM

is significant we expect similar results as in the a2HDM. On the other hand, if the qEDMs

and/or the Weinberg operator are large with respect to the qCEDM, the relation dD = dn+

dp should hold to good approximation. More refined statements should become possible,

once the parameter space of the MSSM is further constrained.

4.1.4 The deuteron EDM: an overview

Let us briefly summarize the results on the dEDM in the above scenarios. In case of

the QCD θ̄ term, the dEDM is a relatively well understood quantity and can be directly

expressed as a function of the fundamental parameter θ̄. Results so far indicate that the

value of the dEDM is rather close to the sum of the nucleon EDMs, while the relatively

small difference dθ̄D − dθ̄n − dθ̄p provides a good method to extract the value of θ̄.

The situation is different for the other three scenarios. Both for the mLRSM and the

a2HDM we expect ∣∣∣∣dD − dn − dpdn + dp

∣∣∣∣ > 1 . (4.7)

However, the exact value of this ratio is uncertain. In the mLRSM, NDA suggests that the

dEDM can be larger by an order of magnitude, while in the a2HDM the enhancement is

16We most likely overestimate the nucleon EDM contribution to dH
D since dH

n + dH
p is expected to be

smaller than dH
n and dH

p individually, see eqs. (3.20) and (3.21).
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more likely a factor of a few. Unfortunately, the large uncertainties involved in the LECs

preclude a more quantitative statement. In the MSSM the situation is more uncertain and

|(dD − dn − dp)/(dn + dp)| can lie between zero and a factor of a few, depending on the

relative sizes of the q(C)EDMs and Weinberg operator. This means that additional tests

are required. Such a test could be the following: measurements of dn, dp, and dD allow the

extraction of ḡ1 from the relation

dD − dn − dp = (0.18± 0.023)ḡ1 e fm . (4.8)

As we shall discuss in the next section, this extraction of ḡ1 allows the separation of the

θ̄ and mLRSM scenarios from the other two, if measurements of the EDMs of 3He and/or
3H can be made.

To conclude, it is likely that measurements of dn, dp, and dD would allow to disen-

tangle the θ̄ term from the three BSM scenarios discussed here. This already shows the

potential impact of the plans to measure dp and dD in storage-ring experiments. Unfor-

tunately, the three measurements are most likely not sufficient to disentangle the three

BSM scenarios, a problem which is mainly caused by the poor information available on the

hadronic /P/T LECs.

4.2 The EDMs of the helion and triton

The experimental EDM storage-ring program not only allows the possible measurement

of the proton and deuteron EDMs, but also those of other light nuclei. In particular,

measurements on the tri-nucleon EDMs are interesting from the theoretical point of view.

These systems are simple enough in order to be accurately described within chiral effective

theory, with nuclear uncertainties which are small compared to the hadronic uncertainties

in the LECs. In addition, the tri-nucleon EDMs are complementary to the dEDM, mainly

due to their much larger dependence on ḡ0.

The 3He EDM was calculated using phenomenological PT -even NN potentials (includ-

ing the Coulomb potential) and a one-meson-exchange model for the /P/T NN potential in

ref. [141] (for older work, see ref. [142]), while the no-core shell model was used to obtain

the nuclear wave function. This framework was also applied in ref. [50], where the /P/T

potential was derived within chiral effective field theory, and results for the 3H EDM were

also presented. In a recent work, the authors of [140] used phenomenological PT -invariant

potentials in combination with a one-meson-exchange /P/T potential, while Faddeev equa-

tions were used to solve the three-body problem. The results of refs. [50, 141] and [140]

on the dependence of the tri-nucleon EDMs on the nucleon EDMs agree. However, in

ref. [140] the dependence on ḡ0,1 was found to be smaller by a factor two. This discrepancy

was recently solved in refs. [54, 55] which confirmed the smaller results of [140] for ḡ0 and

ḡ1. Thus, the following results apply:

d3He = (0.89± 0.01) dn − (0.039± 0.01) dp

+
[
(0.099± 0.026) ḡ0 +(0.14± 0.028) ḡ1

]
e fm ,

d3H = −(0.051± 0.01) dn + (0.87± 0.01) dp

−
[
(0.098± 0.024) ḡ0 −(0.14± 0.028) ḡ1

]
e fm , (4.9)
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with a nuclear uncertainty of the two-body contributions of approximately 25%. The

larger uncertainty compared to the deuteron case arises from the more complicated 3-body

Faddeev calculations, where about 20 intermediate partial waves need to be summed in

order to reach a stable result for the two-nucleon contribution [54, 55]. The uncertainty of

the dependence on the single-nucleon EDMs is much smaller and will be neglected below.

In principle, the tri-nucleon EDMs also depend on the /P/T contact interactions of

eq. (4.1). However, for the θ̄ term [51, 136] and the mLRSM [40] these terms only appear

at next-to-next-to-leading order, and can be neglected. In the a2HDM and MSSM they

are larger because of the Weinberg operator [50], but also here their contributions turn out

to be small compared to pion-exchange contributions. We discuss in this more detail in

section 4.2.3.

Finally, the tri-nucleon EDMs could depend on the three-pion vertex proportional to

∆̄LR which appears at leading order for the mLRSM (see eq. (3.8)). This vertex induces

a /P/T three-body interaction which, by the power-counting rules of chiral EFT, formally

contributes at leading order [40]. However, this term has not been taken into account in

any calculation so far. It is therefore unclear whether or not it plays an important role.

4.2.1 The θ̄ term

As was the case for the dEDM, the tri-nucleon EDMs can be expressed in terms of θ̄ with

controlled uncertainty. We insert eqs. (3.2), (3.3), and (3.15) into eq. (4.9) and find

dθ̄3He =
[
(−2.6± 0.80)− (1.78± 0.70± 0.46) + (0.42± 0.28± 0.08)

]
· 10−16 θ̄ e cm ,

dθ̄3H =
[

(1.1± 0.96) + (1.74± 0.68± 0.44) + (0.42± 0.28± 0.08)
]
· 10−16 θ̄ e cm ,

(4.10)

where the first term in bracket denotes the nucleon EDM contribution, while the second

and third term is, respectively, the two-body term due to ḡθ̄0 and ḡθ̄1. Just as in eq. (4.3) the

first error is the hadronic uncertainty, while the second error in the two-body contributions

is the nuclear uncertainty. Despite the increase of the latter with respect to the deuteron

case, the hadronic uncertainties are still dominant. This might change once more precise

lattice results are available, see the discussion in section 6.3.

It is useful to combine the two-body terms into one expression:

dθ̄3He =
[
(−2.6± 0.80)− (1.36± 0.88)

]
· 10−16 θ̄ e cm ,

dθ̄3H =
[

(1.1± 0.96) + (2.16± 0.85)
]
· 10−16 θ̄ e cm . (4.11)

Several conclusions can be drawn from these relations. First of all, both for the 3He and
3H EDMs the two-body contributions add constructively to the one-body contributions.

Second, in both cases the two-body contributions are, within the uncertainties, of similar

magnitude as the one-body contributions. Third, measurements of dn, dp, dD, d3He and/or

d3H allow for a relatively precise test of the relevance of the θ̄ term, even without relying

on any lattice results. That is, the value of θ̄ can be extracted from (dD − dn − dp), which
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can then be compared with the predictions

d3He − 0.89 dn + 0.039 dp = −(1.36± 0.88) · 10−16 θ̄ e cm ,

d3H + 0.051 dn − 0.87 dp = (2.16± 0.85) · 10−16 θ̄ e cm . (4.12)

Of course, using lattice data would allow for additional nontrivial tests.

4.2.2 The mLRSM scenario

Within the mLRSM, the analysis of the tri-nucleon EDMs is very similar to that of the

dEDM. Because of the smallness of ḡLR
0 /ḡLR

1 , the terms proportional to ḡ0 in eq. (4.9) can

be neglected. The estimates in eqs. (3.5) and (3.17) then tell us that the tri-nucleon EDMs

are, just as the dEDM, about an order of magnitude larger than the nucleon EDMs. In

particular, assuming that the nucleon EDM contribution can be neglected at leading order,

the mLRSM predicts

dLR
3He ' d

LR
3H ' 0.7 dLR

D . (4.13)

That is, in this scenario these dipole moments have the same sign and are of the same

order of magnitude.

Two caveats exist that could alter this prediction. First of all, the ratio of the two-

body-to-one-body contributions has been estimated by NDA. It is not impossible that the

nucleon EDM contributions are more important than NDA suggests. A better test then

would be to extract ḡ1 from (dD−dn−dp) and use this to predict (d3He−0.89dn+0.039dp)

and/or (d3H + 0.051dn − 0.87dp). However, even this prediction might be altered by the

second caveat which consists of possible contributions to the tri-nucleon EDMs proportional

to the three-pion vertex ∆̄LR in eq. (3.8). If these contributions are significant, both

tests described above will fail because the tri-nucleon EDMs depend on an independent

LEC which does not appear in the leading-order expressions of the nucleon and deuteron

EDMs.17 We conclude that a calculation of the dependence on the tri-nucleon EDMs on

∆̄LR is an important open problem.

4.2.3 The a2HDM and MSSM scenarios

The analysis of the tri-nucleon EDMs within the a2HDM is more complicated than in

the previous two scenarios. Similar to the dEDM, the tri-nucleon EDMs are most likely

larger than the nucleon EDMs by a factor of a few. However, the exact size of dH
3He,3H/d

H
n,p

is uncertain.

In addition, even with measurements of dn, dp, and dD, the tri-nucleon EDMs cannot

be firmly predicted. This can be understood from the ḡ0 terms in eq. (4.9) which are

expected to be significant in the a2HDM scenario, but the size of ḡ0 cannot be obtained

from dn, dp, and dD. One could then think of a negative test: measurements of dn, dp, and

dD allow the extraction of ḡ1. This value, in combination with dn and dp, can be used to

predict the tri-nucleon EDMs. If these predictions would not agree with the data, it would

indicate that the tri-nucleon EDMs obtain an independent contribution, suggesting that

17It should be noted that ∆̄LR is expected to contribute to the dEDM at next-to-leading order [40].

However, its precise contribution has not been calculated so far.
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ḡ0 plays a role which would hint at the a2HDM. A caveat is that such a scenario could also

point to the mLRSM in which the independent contribution is due to ∆̄LR.

A better method to test the a2HDM scenario then seems to be the following: from

measurements of dn, dp, and dD, it is possible to extract the size of ḡH
1 . This value, in

combination with a measurement of d3He (d3H), allows for the extraction of ḡH
0 . The value

of d3H (d3He) can then be predicted.

Lattice calculations could improve this somewhat bleak scenario where five EDMs are

necessary for a proper test. Because in the a2HDM, the nucleon EDMs depend on the

EDM and CEDM of the d quark and on the Weinberg operator, lattice calculations of the

nucleon EDM will be very difficult. On the other hand, the /P/T pion-nucleon LECs mainly

depend on the qCEDM. If ḡ0,1 can be calculated as a function of the qCEDM, the number

of necessary experiments can be reduced.

If in case of the MSSM the qCEDM turns out to be significant the pattern of tri-

nucleon EDMs would be similar to that of the a2HDM. That is, the tri-nucleon EDMs

are expected to depend on ḡ0 as well. However, if the qEDM and/or Weinberg operator

dominate the qCEDM, d3He (d3H) are expected to lie close to dn (dp).

Finally we comment on the /P/T contact LECs in eq. (4.1). As discussed in refs. [50, 136],

for most /P/T dimension-four and -six operators these terms are very small. For the Weinberg

operator, however, which appears in the a2HDM and MSSM scenarios, these operators

could be as important as one-pion exchange between nucleons involving ḡ0. As we argued

in section 3.1.3, in the a2HDM the contribution from the Weinberg operator to ḡ0 can be

neglected, because of the larger contribution from the down-quark CEDM. This implies

that the contributions from the interactions in eq. (4.1) to the /P/T NN potential can be

neglected as well. In addition, ref. [50] found that the dependence of the tri-nucleon EDMs

on C̄1,2 was smaller then expected by power counting. This last point could imply that

also in the MSSM it is safe to neglect the /P/T nucleon-nucleon contact interactions in the

tri-nucleon EDMs. However, the contact interactions might become more important in

heavier nuclei.

4.3 Tri-nucleon EDMs: an overview

For probing the QCD θ̄ term the tri-nucleon EDMs are very promising observables. Because

the tri-nucleon EDMs depend on ḡ0 at leading order, the two-body contributions are a few

times bigger than for the deuteron EDM which implies that the tri-nucleon EDMs are

not dominated by the constituent nucleon EDMs. The EDMs of the helion and trition

are thus expected to be larger than the EDMs of the neutron and proton. Furthermore,

the small nuclear uncertainties allow for a proper test of strong CP violation, once θ̄ has

been determined from measurements of dn, dp, and dD, or from lattice calculations in

combination with a measurement of dn and/or dp.

Measurements of the tri-nucleon EDMs would also provide important information on

the mLRSM scenario. In particular, the /P/T two-body interactions dominate over the

nucleon EDMs by an order of magnitude, as in the case of the deuteron EDM. If this were

the whole story, this would imply that dD, d3H, and d3He depend only on a single LEC

ḡLR
1 which means that once one of these EDMs has been measured, the other two can be
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predicted. However, the tri-nucleon EDMs might obtain an important contribution from

the three-pion vertex proportional to ∆̄LR. A more conclusive statement can be made once

the dependence of the tri-nucleon EDMs on ∆̄LR has been calculated.

In the a2HDM scenario, the tri-nucleon EDMs are in principle independent from the

deuteron EDM because of the dependence on ḡH0 . Estimates of the nucleon EDMs and the

pion-nucleon LECs ḡH
0,1 suggest that the two-body contributions dominate the light-nuclear

EDMs — however, the uncertainties are large. A lattice calculation of the ḡH
0,1 induced by

the qCEDM could significantly improve the situation. A lattice calculation of dn,p would

be beneficial as well, but more complicated because of its dependence on the three BSM

operators in eq. (2.20).

Depending on the hierarchy between the BSM operators in eq. (2.23), the situation in

the MSSM might be very close to the a2HDM. This implies that these scenarios cannot

be disentangled using light-nuclear EDMs alone. On the other hand, if in the MSSM the

qEDMs or the Weinberg operator are significantly larger than the qCEDMs, this would

imply that /P/T two-body effects in light-nuclear EDMs are relatively small compared to

contributions from the nucleon EDMs. In this particular, and admittedly ad hoc, case, the

EDMs of the deuteron and tri-nucleon EDMs should be well approximated by their con-

stituent nucleon EDMs. Thus, the MSSM might leave a footprint behind in the hierarchy

of light-nuclear EDMs which is distinct from the other scenarios.

In any case, measurements of the tri-nucleon EDMs would provide important infor-

mation on the source of non-KM CP violation, if such a source exists. Measurements of

the nucleon, deuteron, and tri-nucleon EDMs allow one to disentangle the θ̄ and mLRSM

scenarios from the a2HDM and MSSM scenarios considered in this paper. It is in general

not possible to separate the latter two from each other using light-nuclear EDM measure-

ments alone.

5 EDMs of other systems

In this section we briefly discuss EDMs of other systems which are not the main focus of this

work. In particular we consider, within the above scenarios, /P/T effects in the paramagnetic

atom/molecules 205Tl, YbF, and ThO, which depend on the electron EDM (eEDM) and

semi-leptonic four-fermion operators. We also discuss the EDM of the diamagnetic 199Hg

atom. There exist strong experimental limits on these EDMs, but atomic and nuclear

theory is required to relate the existing experimental bounds on T -violating effects in these

complicated systems to an underlying mechanism of CP violation.

5.1 The EDMs of paramagnetic systems

So far we have focused on hadronic EDMs, but the electron EDM is, of course, an important

observable as well. In general, eEDM measurements are complementary to hadronic EDM

measurements because they probe different fundamental parameters. The eEDM, however,

is not measured directly but inferred from measurements on atomic and molecular systems.

The current strongest bound on the eEDM comes from the limit on a T -violating effect

in the molecule ThO [15]. Strong limits are obtained from the molecule YbF [143, 144]
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and the paramagnetic atom 205Tl [145] as well. The eEDM is not the only /P/T source

that would generate an EDM of 205Tl or the T -violating effects searched for in YbF and

ThO. In particular, additional contributions can arise from /P/T semi-leptonic four-fermion

operators, but, as discussed below, these contributions can be neglected as compared to

the one due to the electron EDM.

In the θ̄ scenario, that is to say, in the SM with massless neutrinos and a nonzero θ̄

term, the eEDM is generated as a spill-over from the quark sector by the θ̄ term and the

KM phase and is therefore much smaller than the EDM of a nucleon [146–148], |de| .
10−37 e cm. Contributions from /P/T semi-leptonic interactions to T -violating effects in

atoms and molecules might be larger than those from the eEDM, but also they are strongly

suppressed [149]. Therefore, in the θ̄ scenario we do not expect a nonzero measurement of

a T -violating effect in the above paramagnetic systems.

In the mLRSM, both the qEDMs and the eEDM are generated at one-loop. These

expressions differ because the diagram for the qEDM involves quarks whereas in the case

of the eEDM the loop involves massive neutrinos. The qEDMs du and dd involve the factor∑
i=d,s,b Im(e−iαmiV

ui
L V ui∗

R ) and
∑

j=u,c,t Im(e−iαmjV
jd
L V jd∗

R ), respectively [69, 150, 151],

while the expression for the electron EDM contains the factor Im(e−iα(MνD)ee) [152, 153],

where MνD is the neutrino Dirac-mass matrix. Because the expressions for dq and de involve

different parameters their relative magnitudes cannot be reliably compared in general.

However, if we assume the CP phases in both cases to be of the same order and take

the ee element of the neutrino Dirac-mass matrix to be of the of order the electron mass,

|MνD | ' me, the eEDM will be suppressed with respect to the qEDM by at least a factor

me/mu,d. Since, in the mLRSM, the qEDM make negligible contributions [69] to hadronic

and nuclear EDMs as compared to the dominant contribution of the tree-level generated

four-quark operator discussed in section 2.2, the eEDM is expected to be significantly

smaller than the nEDM. Assuming |MνD | ' me and the different phases to be of the same

order, we estimate de/dn ∼ 10−4. We emphasize that a more precise statement is not

possible because the hadronic and electron EDMs depend on different parameters.

In the version of the a2HDM discussed in section 2.3 the contribution to the eEDM

is dominated by two-loop diagrams and the expressions are nearly identical to those of

the d-quark EDM. Two things are altered. First of all, there is the obvious difference

between the masses and charges of the d quark and the electron. More important is that

the eEDM depends on a different CP -odd parameter, namely, Im(ςlς
∗
u) where ςl is defined

analogously to ςd [61], cf. eq. (2.14). This means it will be hard to compare the d-quark

EDM and eEDM in general. If we assume the two CP -violating parameters to be of the

same order, the magnitudes of the two EDMs should be comparable at the electroweak

scale with a minor enhancement of the d-quark EDM by a factor md/me. However, the

d-quark EDM gets large contributions from the d-quark CEDM when the operators are

evolved to lower energies. It is more interesting to look at the electron-to-neutron-EDM

ratio in the a2HDM. Assuming the CP -violating parameters to be equal (see eq. (B.1)) and

using eq. (3.22) we estimate |de/dn| ∼ 10−2. The upper bound on the eEDM then implies

a bound on the nEDM dn . 10−26 e cm in this scenario. In view of the dependence of the

eEDM and nEDM on different parameters this bound is not very stringent.

In the MSSM one expects, in general, the electron-to-neutron-EDM ratio to be of
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the same order of magnitude as in the a2HDM. In particular, the ‘split SUSY’ scenario

predicts a strong correlation between these EDMs, |de/dn| ∼ 1/10 [111], up to theoretical

uncertainties in the calculation of dn.

What about the semi-leptonic operators in the BSM scenarios? In both the mLRSM

and the a2HDM they are generated through tree-level exchange of a heavy Higgs boson.

These operators are therefore suppressed by a factor mqme/v
2 from the Yukawa couplings.

In addition there is a factor 1/m2
H from Higgs-boson exchange H, where mH denotes the

mass of H. While in the a2HDM mH must not exceed ∼ 1 TeV, in the mLRSM the masses

of the heavy Higgs bosons with CP -violating Yukawa couplings are of the order of 10 TeV.

Even though in both models the eEDM is generated at the loop level, it nevertheless

dominates the contributions to the above atomic/molecular T -odd effects. The only way

around this is if the CP phases that appear in de are tuned to be much smaller than the

phases of the coefficients of the semi-leptonic operators. Barring this possibility then, in

the a2HDM, the contributions from the semi-leptonic operators to the T -violating effects

in 205Tl, ThO, and YbF are suppressed by about two orders of magnitude with respect

to those of the eEDM, see ref. [62] for a more detailed discussion. In the mLRSM the

contributions of the /P/T semi-leptonic operators to these paramagnetic systems are even

less important than in the a2HDM, in view of the larger suppression factors discussed

above. In the MSSM, the /P/T semi-leptonic operators are non-negligible, especially when

the first and second generation of sfermions are very heavy [93]. However, because global

fits to experimental data seem to disfavor large values of tanβ & 30 (cf. section 2.4), the

dominant contribution to, e.g., the 205Tl EDM still comes from the electron EDM [93]. Thus

one may conclude that the eEDM provides the dominant contribution to the T -violating

effects in 205Tl, ThO, and YbF.

In summary, the size of the eEDM with respect to hadronic EDMs gives additional

information to disentangle the various scenarios. Clearly, a nonzero eEDM would rule out

the pure θ̄-scenario. Within the a2HDM and the MSSM, the eEDM is expected to be

about one to two orders of magnitude smaller than the neutron EDM. In the mLRSM this

suppression is expected to be even larger. However, in these scenarios no solid predictions

can be made because the eEDM and the hadronic EDMs depend, in general, on different

unknown parameters.

5.2 The 199Hg EDM

Schiff’s theorem [154] ensures that in the non-relativistic limit the EDM of a point-like nu-

cleus in an atomic system is completely screened by the electrons surrounding the nucleus.

This would imply that the total EDM of an atomic system is zero. However, in real atoms

the necessary conditions for Schiff’s theorem to apply are violated. For example, in case

of 199Hg, a diamagnetic atom, the largest contribution to the atomic EDM stems from the

finite size of the nucleus and is induced by the so-called nuclear Schiff moment SHg.
18 For

18The mercury EDM also receives contributions from the electron EDM and /P/T semi-leptonic interactions,

but these are better probed in the paramagnetic systems discussed in the previous section. We therefore

do not discuss the (semi-)leptonic contributions here.
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199Hg, the relation between the atomic EDM, dHg, and SHg is given by [12, 155–157]

dHg = (2.8± 0.6) · 10−4 SHg fm−2 , (5.1)

with an uncertainty estimate based on ref. [158]. While the atomic calculation is rather

well under control, the main uncertainties arise from the nuclear-theory calculation of SHg.

Typically it is calculated as a function of the pion-nucleon couplings, cf. eq. (3.1), and the

single nucleon EDMs. However, at present there exists no EFT for nuclei with this many

nucleons. It is therefore not clear whether or not there will be important contributions from

other /P/T hadronic interactions such as the contact interactions in eq. (4.1). In addition,

corrections to leading terms cannot be systematically calculated which means that the

uncertainties are difficult to quantify. If we assume that SHg is dominated by pion-nucleon

interactions, the estimated uncertainties are large [12, 52, 159]

SHg = [(0.37± 0.3)ḡ0 + (0.40± 0.8)ḡ1] e fm3 . (5.2)

For example, in case of the θ̄ scenario we can use eqs. (3.2) and (3.3) to obtain19

S θ̄Hg = [−(6.5± 2.5± 5.3) + (1.2± 0.8± 2.4)] · 10−3 θ̄ e fm3 , (5.3)

with the first term due to ḡθ̄0 and the second due to ḡθ̄1. In each bracket the first error is the

hadronic uncertainty from the coupling constants and the second the nuclear uncertainty

taken from eq. (5.2). In contrast to the results for the EDMs of light nuclei, here the

nuclear uncertainty is dominant and might be difficult to reduce. Inserting eq. (5.3) into

eq. (5.1) and combining all uncertainties gives

dθ̄Hg = − (1.5± 1.8) · 10−19 θ̄ e cm , (5.4)

to which the contributions from the constituent nucleon EDMs still need to be added. This

result implies that even if a nonzero EDM was measured for 199Hg, the uncertainties, at

the moment, would be too large to test the θ̄ scenario.

In the mLRSM scenario, the dominant contribution to SHg is expected to come from

ḡLR
1 . However, due to the large nuclear uncertainty it is not possible to predict the size of

dHg once ḡLR
1 has been extracted from, for example, light-nuclear EDM experiments. For

the same reason a measurement of dHg cannot be used to extract a sufficiently precise value

of ḡLR
1 . The discussion for the a2HDM and MSSM20 scenarios is similar to the mLRSM

scenario. In these cases, also ḡH
0 is expected to give a significant contribution, but again the

nuclear uncertainties are too large to extract any nontrivial, quantitative information. In

conclusion, disentangling the various scenarios using measurements of dHg is not possible,

unless the nuclear theory is improved substantially.21

19In case of the θ̄ term, Sθ̄Hg receives contributions from the nucleon EDMs which are of the same order

as the ḡθ̄0,1 contributions [158]. We do not give the detailed expressions here.
20For a recent analysis of Schiff moments within the MSSM, see ref. [116].
21Future experiments on 225Ra might be more promising since the nuclear theory is more reliable than

for 199Hg [12].
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6 Discussion, outlook, and summary

6.1 Testing strategies

Based on the findings of this paper there are several strategies to reveal nontrivial in-

formation on the /P/T sources, once non-vanishing measurements and/or improved lattice

calculations of EDMs of nucleons and light nuclei are available.22

Since the /P/T pion-nucleon coupling constants are known quantitatively for a non-

vanishing θ̄-term, the most conclusive tests can be formulated for this scenario: if the

QCD θ̄-term is assumed to be the prominent source of CP violation beyond the CKM-

matrix, it follows directly from eq. (4.10) that the value of θ̄ can be extracted from EDM

measurements of both the neutron and 3He via

d3He − 0.9 dn = (−1.4± 0.9) · 10−16 θ̄ e cm , (6.1)

where the uncertainties were added in quadrature and we dropped the contribution from

the proton EDM, whose contribution to d3He is strongly suppressed. A lattice calculation

for dn then allows for the first nontrivial test of the assumed scenario. Note that in this case

all nonperturbative QCD effects can be controlled quantitatively. In the next subsection

we discuss how the present uncertainty of about 70% can be reduced further. The value of

θ̄ extracted from eq. (6.1) can now be used to predict

dD − dn − dp = (5± 4) · 10−17 θ̄ e cm , (6.2)

where the uncertainties displayed in eq. (4.3) were again added in quadrature. This pro-

vides the second nontrivial test, if in addition also the EDM of the deuteron, dD, and of

the proton, dp, were measured. If the same value of θ̄ could explain simultaneously the

measured values of d3He, dD as well as dn and dp calculated on the lattice, it would provide

very strong evidence that indeed the QCD θ̄-term is the origin of the non-vanishing EDMs.

If the QCD θ̄-term would not pass this test, alternative scenarios need to be studied.

In this work we considered, for illustration, the mLRSM, the a2HDM, and the MSSM. In

these cases the absence of a quantitative knowledge of the induced LECs hinders predictions

for the nuclear EDMs analogous to eqs. (6.1) and (6.2). However, at least for the mLRSM

different EDMs can be related to each other, since in this scenario ḡ1 dominates over ḡ0.

This results in the prediction that the single nucleon EDM should be significantly smaller

than the nuclear ones. In addition, one may extract ḡLR
1 from eq. (4.2)

dD − (dn + dp) ' dD = (0.18± 0.02) ḡLR
1 e fm . (6.3)

This value of ḡLR
1 can then be used to predict d3He according to eq. (4.9)

d3He − 0.9 dn ' d3He = (0.14± 0.03) ḡLR
1 e fm . (6.4)

Note, this nice relation could be spoiled by a potentially large CP -odd three-body force,

as discussed above. If the mLRSM fails its test, too, the physics responsible for the CP -

violation must come from yet another theory beyond the Standard Model, candidates

22In this section we do not consider measurements of the EDM of 3H since, due to its radioactive nature,

it is not likely to be measured in a storage ring experiment.
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dn dp dD d3He

θ̄ 1 · 10−10 × × 4 · 10−14

sin ζ Im(V ud∗
L V ud

R eiα) 4 · 10−5 2 · 10−8 2 · 10−9 2 · 10−9

Table 1. Sensitivities to the magnitudes of CP -violating parameters of the θ̄ and mLRSM scenarios.

The first column shows the relevant parameters, while the second column shows bounds from the

current upper limit on the neutron EDM, dn ≤ 2.9 · 10−26e cm. The remaining columns show

the values to which the CP -violating parameters could be probed by measurements of the proton,

deuteron, and helion EDMs at the envisaged accuracy: 10−29 e cm. The contributions of θ̄ to

the proton and deuteron EDMs are consistent with zero within the uncertainties of eqs. (3.15)

and (4.3) and can therefore, at the moment, not be used to probe θ̄. If we were to take the central

values of eqs. (3.15) and (4.3), we would obtain sensitivities of 9 · 10−14 and 8 · 10−14 for dp and

dD, respectively.

being the a2HDM and the MSSM discussed in this work: in these models ḡ0 and ḡ1

are expected to be similar in size and the single-nucleon as well as 3He EDMs acquire

additional important contributions. As outlined in section 5.1 the electron EDM might

provide additional information to disentangle the mLRSM from the other scenarios.

Thus, if the EDMs for proton, neutron, deuteron, and 3He were measured with high

precision, highly nontrivial information could be deduced on the CP -violating physics re-

sponsible for their appearance.

6.2 Expected sensitivities

So far we have focused on ways to disentangle the four scenarios of CP violation. However,

it is also interesting to see how well the current and proposed EDM experiments are able to

probe non-KM CP violation in each of the four scenarios. To this end we will discuss the

sensitivities to the CP -violation parameters that would result from EDM measurements of

the proton, deuteron, and helion at the envisaged accuracy [16–19]. These sensitivities are

shown in table 1 for the θ̄ and mLRSM scenarios and in figure 4 for the a2HDM scenario.

We do not discuss the MSSM scenario here. For comparison, we also show the bounds

that can be set by the current upper limit on the neutron EDM [5]. The most conservative

values allowed by the uncertainties of the expressions in sections 3 and 4 were used to

obtain these bounds and sensitivities. We assigned an uncertainty of a factor 10 to the

estimates based on NDA.

The current upper limit on the neutron EDM already stringently constrains the CP -

violating parameters appearing in each of the three scenarios.23 Obviously, for all scenarios

a measurement of the proton EDM at the proposed accuracy would greatly improve the

sensitivity to the CP -violating parameters as compared to the current neutron EDM limit.

23The bound on the CP -violating parameters of the mLRSM in table 1 would be an order of magnitude

stronger if we would not include the factor 10 uncertainty assigned to the NDA estimate. Such a bound

would still be roughly an order of magnitude weaker than the bound derived in ref. [60], see ref. [74] for

more details.
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Figure 4. Sensitivities to the magnitude of the CP -violating parameter Im(ς∗uςd) as a function of the mass

of the additional Higgs fields. The region of parameter space which is excluded by the current upper limit

on the neutron EDM (dn ≤ 2.9 · 10−26 e cm) is shown in grey and bounded by the solid line. The region

that would be probed by a measurement of the proton EDM at the accuracy of 10−29 e cm is shown in

green and bounded by the dashed line.

To what extent the deuteron and/or helion EDMs are more sensitive than the proton

EDM depends on the relative sizes of the corresponding EDMs which differ between the

various scenarios. In the θ̄ scenario, the helion EDM should be a few times bigger than

the deuteron and proton EDMs, while in the mLRSM scenario both the deuteron and

helion EDMs are expected to be an order of magnitude larger than the proton EDM.

This is reflected in table 1, where the greatest sensitivity to θ̄ would come from a helion

EDM measurement, while a deuteron EDM measurement would be the best probe for the

mLRSM scenario. In the a2HDM scenario, the deuteron and helion EDMs are expected

to be of similar size, both are larger than the proton EDM by a factor of a few. However,

the exact size of this factor is rather uncertain and we therefore only show in figure 4 the

region of parameter space which could be probed by a measurement of the proton EDM

at an accuracy of 10−29e cm.

6.3 How to improve the theoretical accuracy

Various paths are possible to improve the theoretical accuracy of the EDM calculations and

make, in this way, the tests outlined in section 6.1 even more challenging for the models.

Let us first consider CP violation due to the QCD θ̄-term. An improved theoretical

understanding of single-nucleon EDMs can come from lattice QCD only. Respective calcu-

lations near or even at the physical pion mass including the still missing estimates of the

pertinent systematic errors are necessary. In this way the parameter θ̄ could be determined

from a measurement of, e.g., the neutron EDM and used to predict the EDMs of the proton

and the light nuclei based on eqs. (6.1) and (6.2).

The uncertainties of the two-nucleon contributions are dominated by those of the

coupling constants, i.e., the nuclear part of the calculations is sufficiently well under control.

This is clearly visible in the deuteron result eq. (4.3), where the nuclear uncertainty is
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only about 15% of the hadronic one. For the helion and triton calculations the nuclear

uncertainty increases to about 60% of the hadronic one, cf. eq. (4.10).

To reduce the uncertainties of the /P/T pion-nucleon coupling constants ḡθ0 and ḡθ1,

cf. eqs. (3.2) and (3.3), respectively, again lattice QCD may play an important role.

About half of the uncertainty of ḡθ0 results from the QCD contribution to the neutron-

proton mass difference, the other half from the ratio of the u to d quark masses. In the last

ten years the determination of the latter quantity has improved from a range of 0.3–0.7

(cf. ref. [160]) to 0.38–0.58 (cf. ref. [63]) because of improved lattice QCD calculations. The

standard for lattice calculations is now “full QCD” with two light (u and d sea) quarks

plus one heavy (s sea) quark [161, 162]. Direct lattice determinations exist already for

the strong-interaction contribution to the neutron-proton mass difference [163] which will

be improved in the future. In addition, once the electromagnetic contribution to hadronic

ground state masses can be fully included in the simulations (see ref. [164] for the state of

the art which, however, does not include all dynamical effects yet), the physical neutron-

proton mass difference can be included in the analysis as well which should lead to improved

values of both mu/md and the strong-interaction contribution to the neutron-proton mass

difference. This in turn will lead to a reduction of the uncertainty of ḡθ0.

The situation for ḡθ1 is different to the extend that only half of the uncertainty given

in eq. (3.3) stems from the LEC c1. This LEC is related to the nucleon σ-term and is

open for improvements from lattice QCD or from studies of the πN -system. The other

half results from the NDA estimate of an additional contribution to the isospin-breaking

/P/T pion-nucleon vertex which cannot be traced back to the σ-term. In summary, future

lattice calculations might reduce the uncertainty of ḡθ1 listed in eq. (3.3) by a factor of two,

such that the two-nucleon contribution to the deuteron EDM, the analog of eq. (4.4), will

be predicted with only a (30–40)% error.

Even the comparably small nuclear uncertainty can be reduced by about a factor of two

by replacing the PT -even N2LO interactions and pertinent wave functions by their N3LO

counterparts (including N3LO three-body forces in the helion and triton cases) [54, 55].

The application of these improved chiral potentials and wave functions together with the

envisaged lattice improvements might finally reduce the uncertainties of the two-nucleon

contributions to the helion and triton EDMs listed in eq. (4.12) to a (20–30)% error.

The improvements in the chiral potentials and wave functions hold of course also for

the BSM scenarios. The uncertainty of the two-nucleon contribution to the deuteron EDM

(eq. (4.2)) and to the tri-nucleon EDMs (eq. (4.9)) might then be reduced by about 50%.

Nevertheless the biggest unknowns in these cases are the hadronic inputs, the LECs ḡ0 and

ḡ1 (and, in addition, the strength of the three-pion vertex, ∆̄, in the mLRSM scenario).

The calculation of the /P/T three-point correlators, pion-two-nucleon for ḡ0,1 and three-pion

for ∆̄, seems to be a task that probably only lattice calculations can address in the future.

The same can be said of the single-nucleon EDMs generated by dimension-six sources.

6.4 Summary

In this work we have investigated, by using four different models of flavor-diagonal CP

violation, how distinct CP scenarios leave their footprint in EDMs of different systems.
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Such a study has to be performed in several steps: first, the models are analyzed at some

high-energy scale where perturbation theory applies. We studied the Standard Model (with

massless neutrinos) including the QCD θ̄ term, the minimal left-right symmetric model

(mLRSM), an aligned two-Higgs model (a2HDM) and, briefly, the minimal supersymmetric

extension of the Standard Model (MSSM). In each case we have investigated the pertinent

CP -odd sources and how they induce, at lower energies, effective /P/T operators of dimension

six (in the Standard Model case, the θ̄ term appears directly and is of dimension four).

Because symmetries and field content differ between the four scenarios, they give rise to

different (sets of) effective operators. In the Standard Model the only relevant operator

is the θ̄ term, in the mLRSM the dominant operator is a /P/T four-quark operator with

nontrivial chiral and isospin properties, while in the a2HDM scenario the quark EDM,

chromo-EDM, and the Weinberg three-gluon operator are all relevant. In the MSSM the

situation is, in general, similar to the a2HDM, although distinctive scenarios are also

possible within the MSSM framework, cf. section 2.4.

The next step involves the evolution of the resulting operators to the low energies

where the experiments take place. This can be done perturbatively down to an energy

around the chiral-symmetry-breaking scale by use of one-loop QCD renormalization-group

equations. To go to even lower energies, nonperturbative techniques are required. In this

work we have extended the Lagrangian of chiral perturbation theory (χPT) to obtain an

EFT describing /P/T interactions among pions, nucleons, and photons which are the relevant

degrees of freedom for hadronic and nuclear EDMs. χPT allows for a systematic derivation

of the operator structure of the /P/T hadronic interactions. However, only some low energy

parameters induced by the θ̄ term can be controlled quantitatively. For all other scenarios

each interaction comes with an unknown strength, traditionally called low energy constant

(LEC), whose size cannot be obtained from symmetry arguments alone. Nevertheless, as

argued here and elsewhere [39, 40, 51], symmetry considerations still provide important

clues on the hierarchy of the various interactions.

It was demonstrated that the /P/T dimension-four and -six operators appearing in the

various scenarios transform differently under chiral and isospin rotations which carries over

to the parameters of the chiral Lagrangian. In the pionic and pion-nucleon sector the most

important interactions are given by

L = ḡ0N̄π · τN + ḡ1N̄π3N − ∆̄
π3π

2

2Fπ
, (6.5)

where the relative sizes of the three LECs ḡ0,1 and ∆̄ depend crucially on the CP -odd

scenario under investigation. In particular, one finds for the ratio ḡ1/ḡ0 [39, 40, 51, 132]

ḡθ̄1

ḡθ̄0
= −0.2± 0.1 ,

ḡLR
1

ḡLR
0

= −50± 25 ,

∣∣∣∣ ḡH
1

ḡH
0

∣∣∣∣ ' 1 ,

∣∣∣∣ ḡMSSM
1

ḡMSSM
0

∣∣∣∣ ' 1 , (6.6)

where the uncertainties are largest in the a2HDM and MSSM scenarios. In addition, the

three-pion vertex proportional to ∆̄ only appears at leading order in the mLRSM [40],

while it provides a next-to-next-to-leading-order correction in the other scenarios.
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Despite these differences in the pionic and pion-nucleon sector, the EDMs of the nu-

cleons do not necessarily show a distinct pattern, since in all scenarios the nucleon EDMs

obtain leading-order contributions from the short-range operators of eq. (3.11) [42–48]. The

sizes of the corresponding LECs are not constrained by chiral symmetry which means that

our approach has little predictive power in the single-nucleon sector. Model calculations

or estimates can provide some information on the sizes of the LECs, but the uncertain-

ties are large. In case of the θ̄ term, lattice results are available which provide additional

information, but, at the moment, the uncertainties are still too large to draw firm conclu-

sions. In summary, measurements of the nucleon EDMs are not enough to disentangle the

various scenarios.

Dedicated storage rings might allow for measurements of EDMs of light ions. Because

χPT allows for a unified description of nucleons and (light) nuclei, light-nuclear EDMs can

be calculated in terms of the LECs in eq. (6.5) and the nucleon EDMs. The associated

nuclear uncertainties can be systematically estimated and turn out to be small compared

to the uncertainties in the sizes of the LECs themselves in contrast to calculations of some

of the heavier systems. One reason why the storage ring proposals are so interesting is that

nuclear EDMs already depend at tree level on the interactions in eq. (6.5), providing direct

access to the nontrivial relations of eq. (6.6), in contrast to the single-nucleon EDMs, where

these interactions contribute only at one-loop level and are masked by the presence of the

additional short-ranged operators mentioned above. Since different light-nuclear EDMs24

depend on the same set of LECs with different relative weight [50], the dependence on ḡ0,1

(and possibly ∆̄) can be isolated and the hierarchy presented in eq. (6.6) can be studied

experimentally, once measurements are performed on the EDMs of different light ions as

discussed in section 6.1.

It should be stressed that the models discussed in this paper were chosen to illustrate

the potential as well as limitations of detailed analyses of various EDM measurements.

Clearly, this choice is to some extend arbitrary and does by no means exhaust the possible

options for physics beyond the Standard Model. However, it should have become clear

that the methods applied in this and earlier works are quite general and can also be

used to analyze the signatures of other models for CP violation beyond the Kobayashi-

Maskawa mechanism.

In summary we have argued that an experimental program aimed at measurements

of EDMs of light nuclei is very promising. Such measurements have sufficient sensitivity

to probe scales where well-motivated scenarios of physics beyond the Standard Model are

expected to appear. In addition, we have demonstrated that these measurements are

expected to play an essential role in unraveling the origin(s) of CP violation.
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A The minimal left-right symmetric model

In this appendix we discuss the /P/T dimension-six operators arising in the mLRSM that

can contribute to eq. (1.1). In particular we derive the operator in eq. (2.7) which gives the

dominant contribution to hadronic EDMs. As mentioned in section 2.2, this is not the only

/P/T operator induced at the electroweak scale. The (C)EDM operators of light quarks are

also generated, but only through loop diagrams which suppresses the EDMs and CEDMs

dq and d̃q. In addition, the light-quark EDMs and CEDMs are proportional to a small

quark mass, which further suppresses their contribution to hadronic EDMs with respect to

the four-quark operators arising from eq. (2.7) [69, 70]. The Weinberg three-gluon operator

can be produced as well, but only at the two-loop level and its contribution to EDMs is

negligible [69, 70]. Finally, /P/T four-quark operators are induced by tree-level exchange of

the additional, non-SM-like Higgs particles of the model that have CP -violating couplings

to quarks. However, the four-quark operators involving light quarks are suppressed by

small Yukawa couplings. In combination with the fact that the additional Higgs bosons

giving rise to these four-quark operators should be heavy, with masses exceeding 15 TeV in

order to evade FCNC constraints [60], we can neglect such four-quark operators [69, 70].

Thus, for hadronic EDMs the most important interaction is the right-handed current

interaction in eq. (2.7), which is produced after integrating out the W±R boson. This

operator arises from the interaction between the charged gauge-bosons, W±L,R, and the

bidoublet φ defined in eq. (2.4). In fact, it is the kinetic term of the bidoublet which is

responsible for the mixing between the W±L and W±R bosons, which in turn gives rise to

the operator in eq. (2.7). Using that

Dµφ = ∂µφ+ i
gL
2
W a
Lµτ

aφ− igR
2
φW a

Rµτ
a , (A.1)

where gL,R are the coupling constants of the SU(2)L,R gauge groups which are equal in the

mLRSM, gL = gR, the kinetic term of the bidoublet is given by

L = Tr[(Dµφ)†(Dµφ)] =
igR√

2
Tr

[(
0 W+

Rµ

W−Rµ 0

)
φ†Dµφ

]
+ h.c. + . . . . (A.2)

Here we only kept terms bilinear in W±R . We can now integrate out W±R to obtain

LWR
=

ig2
R

2M2
R

Tr

[(
0 J+

Rµ

J−Rµ 0

)
φ†Dµ

Lφ

]
+ h.c. + . . . , (A.3)

with J−Rµ = URVRγµDR and J+
Rµ = (J−Rµ)†, while VR is the quark mixing matrix of the

right-handed sector, and MR ≈ gRvR is the mass of W±R . Moreover,

Dµ
Lφ = ∂µφ+ i

gL
2
W aµ
L τaφ . (A.4)
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The form of the interaction in eq. (2.7) is already visible in eq. (A.3). It only remains to

integrate out the heavy Higgs fields. To do so we write the bidoublet φ in terms of two

SU(2)L doublets,

φ = (φ1, φ2) , φ1 ≡

(
φ0

1

φ−1

)
, φ2 ≡

(
φ+

2

φ0
2

)
.

Since the field ϕ that corresponds to the SM Higgs field is a doublet under SU(2)L as well,

it is taken to be a linear combination of these fields. The remaining linear combination

then only involves Higgs fields that are, by assumption, heavy. To good approximation

these Higgs fields are given, in terms of the fields in the mass basis, by [60]:

ϕ =

(
−G+

L

(h0 + iG0
Z)/
√

2

)
, ϕH =

(
H+

2

(H0
1 + iA0

1)/
√

2

)
. (A.5)

Here G+
L and G0

Z are the would-be Goldstone boson fields that get absorbed by the W+
L and

ZL fields, respectively, while h0 corresponds to the SM Higgs boson. The fields appearing

in ϕH are assumed to be heavy. The basis transformation between the fields φ1,2 and those

of eq. (A.5) is given by [60](
ϕ

ϕH

)
=

1√
1 + ξ2

(
−1 ξe−iα

ξeiα 1

)(
φ̃1

φ2

)
, (A.6)

where ξ = κ′/κ and φ̃ = iτ2φ
∗. With eq. (2.5) we can check that 〈ϕ〉 =

√
κ2 + κ′ 2 = v/

√
2

while 〈ϕH〉 = 0.

Using eq. (A.6) to rewrite eq. (A.2) in terms of the fields in the mass basis and keeping

only terms containing the light fields ϕ, we obtain

LWR
=

ig2
R

2M2
R

1

1 + ξ2
Tr

[(
J+
Rµξe

−iαϕ†

J−Rµϕ̃
†

)
Dµ(ϕ̃, ξeiαϕ)

]
+ h.c. + . . .

=
ig2
R

2M2
R

ξ

1 + ξ2

[
eiαϕ̃†(Dµϕ)J−Rµ + e−iαϕ†(Dµϕ̃)J+

Rµ

]
+ h.c. + . . .

=
ig2
R

M2
R

ξ

1 + ξ2
eiαϕ̃†(Dµϕ)J−Rµ + h.c. + . . . , (A.7)

where we used
[
iϕ̃†(Dµϕ)

]†
= iϕ†(Dµϕ̃). Finally, a comparison with eq. (2.7) shows that

Ξ1 =
g2
R

M2
R

ξ

1 + ξ2
eiαV ud

R ' 1

κ2 + κ′ 2
κκ′

v2
R

eiαV ud
R ' − 2

v2
sin ζ V ud

R eiα . (A.8)

B The aligned two-Higgs doublet model

In this appendix we discuss how the low-energy /P/T Lagrangian in eq. (2.20) comes about

in the a2HDM with the parameter specifications in eq. (2.19).
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B.1 CP -violating four-quark operators

CP -violating four-quark operators with net flavor number zero are induced, in the model

with the parameters in eq. (2.19), already at tree level by the exchange of the neutral Higgs

bosons H and A and of charged Higgs bosons H± with Yukawa interactions in eq. (2.15).

Because we assume H and A to be (nearly) mass-degenerate, MH 'MA 'M , the relation

eq. (2.18) can be applied to the computation of the coefficients of these operators. Then,

as already briefly mentioned in section 2.3, the exchange of H and A induces operators of

the type (ūu)(d̄iγ5d) and (d̄d)(ūiγ5u) with coefficients ±mumdIm(ς∗uςd)/(v
2M2), where u

(d) denotes here any of the up-type (down-type) quarks. The operators that involve light

quarks only are severely suppressed by the factor mumd/v
2. The contribution of these

operators to the EDM of a nucleon turns out to be, after the assumptions in eq. (2.19),

significantly smaller than the two-loop dipole contributions discussed below in the appen-

dices B.2 and B.3.

The tree-level exchange of the charged Higgs bosons H± between quarks, with Yukawa

interactions given in eq. (2.15), induces at tree-level the /P/T operators (ūd)(d̄iγ5u) and

(ūiγ5d)(d̄u) with coefficients 2mumd|Vud|2Im(ς∗uςd)/(v
2M2

+). The above statements on

the size of the four-quark contributions induced by neutral Higgs boson exchanges apply

also here.

The operators containing heavy quarks can (partially) overcome these suppression

factors. However, these operators do not contribute directly to nucleon EDMs. Operators

with two heavy quark fields can, after integrating out the heavy quarks, induce dimension-

seven operators of the form (q̄q)εαβµνGaαβG
a
µν and (q̄iγ5q)G

a
µνG

aµν [107, 165], where q

denotes a light quark. The size of the contributions of these operators to the nucleon EDM

has been estimated in ref. [107] and also turns out to be significantly smaller than the

contributions coming from the two-loop dipole diagrams to be discussed below.

These considerations justify that we neglect the contributions of four-quark operators

to the low-energy effective Lagrangian in eq. (2.20) in the a2HDM model with the parameter

specifications in eq. (2.19).

The exchange of the neutral Higgs bosons H and A between quarks and leptons `

induces CP -violating semileptonic four-fermion operators (q̄q)(¯̀iγ5`) (and q ↔ `) with

coefficients ±mqm`Im(ς∗q ς`)/(v
2M2). These are of potential importance for T -violating

effects in paramagnetic atoms (cf. section 5.1). However, if

Im(ς∗q ς`) = O (Im(ς∗uςd)) , (B.1)

then the electron EDM induced by two-loop Barr-Zee diagrams [86] dominates by far the

contribution to the T -violating effect in the ThO molecule that was recently searched for

in ref. [15].

B.2 Contributions to the quark EDMs and chromo-EDMs

In general, CP -violating flavor-diagonal neutral Higgs boson exchanges induce quark

(C)EDMs already at one-loop. Because these one-loop terms scale with the third power

of the quark mass (modulo logs), d
(1l)
q , d̃

(1l)
q ∼ m3

q/(v
2M2), they are, in the case of light
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quarks, suppressed as compared to the two-loop Barr-Zee contributions. Although these

are nominally suppressed by an additional loop factor α/(4π), respectively αs/(4π), where

α (αs) is the QED (QCD) coupling, they involve only one power (modulo logs) of mq.

In the a2HDM with the specifications of eq. (2.19), the one-loop exchanges of the neu-

tral Higgs bosons H and A cannot, in fact, generate a one-loop contribution to a quark

(C)EDM. This follows from eq. (2.18). The exchange of a charged Higgs boson does gener-

ate a one-loop contribution. For instance, the EDM of the d quark receives a contribution

d
(1l)
q (H+) ∼ 2mdm

2
u|Vud|2Im(ς∗uςd)/(v

2M2
+). But also these one-loop terms are subdomi-

nant compared to the two-loop terms that we now discuss and can therefore be neglected.

For the general a2HDM with the Yukawa interactions of eq. (2.15) and the couplings

in eqs. (2.16) and (2.17) the Barr-Zee-type diagrams involving a CP -violating neutral spin-

zero particle and a quark in the loop induce the following contribution to the quark EDM

and CEDM, respectively [62, 86, 166, 167]:

dq(µH ;ϕ0, q) = 24eQqmq
α

(4π)3v2

∑
q′,i

Q2
q′

[
f

(
m2
q′

M2
i

)
Re yiqIm yiq′ + g

(
m2
q′

M2
i

)
Re yiq′Im yiq

]
,

d̃q(µH ;ϕ0, q) = −4mq
gsαs

(4π)3v2

∑
q′,i

[
f

(
m2
q′

M2
i

)
Re yiqIm yiq′ + g

(
m2
q′

M2
i

)
Re yiq′Im yiq

]
, (B.2)

where e > 0, Qu = 2/3, Qd = −1/3, and the label µH indicates that these are the quark

(C)EDMs at a scale µH ∼ mt ∼Mϕ. The QCD coupling is understood to be evaluated at

the scale µH . For a neutral spin-zero particle and a W± boson in the loop one gets [62,

86, 166, 167]:

dq(µH ;ϕ0, W±) = −4eQqmq
α

(4π)3v2

∑
i

[
3f

(
M2
W

M2
i

)
+ 5g

(
M2
W

M2
i

)]
Im
(
yiqRi1

)
, (B.3)

where

f(z) ≡ z

2

∫ 1

0
dx

1− 2x(1− x)

x(1− x)− z
ln
x(1− x)

z
, g(z) ≡ z

2

∫ 1

0
dx

1

x(1− x)− z
ln
x(1− x)

z
.

(B.4)

We now apply the specifications of eq. (2.19). Then the contribution in eq. (B.3) is

zero, because R11 = 1, R21 = R23 = 0 and y1
q = 1. eqs. (2.19) and (2.18) imply that

up-type quarks in the fermion loop contribute only to the (C)EDM of a down-type quark

and vice versa. Therefore, diagrams with a top quark in the loop contribute only to the

(C)EDM of the d quark. Diagrams with quarks q 6= t in the loop are suppressed by at

least roughly two orders of magnitude as compared to the t-quark contribution, because of

smaller Yukawa couplings. (This is reflected in the significantly smaller magnitudes of the

respective values of the functions f and g.) Therefore, in the a2HDM with the assumptions

in eq. (2.19), the EDM and CEDM of the u quark in the low-energy effective Lagrangian

can be neglected as compared to those of the d quark. There are also contributions to dq
from charged leptons in the fermion loop but, assuming that the relation in eq. (B.1) holds,

these can also be neglected as compared to the t-quark contribution to dd.
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Another set of Barr-Zee type contributions to dq involves charged Higgs boson ex-

change [62, 167, 168]. They contribute significantly to the d-quark EDM only, while the

u-quark EDM is again negligible [62, 167]:

dd(µH ;H±) = md
12M2

W

(4πv)4
|Vtb|2|Vud|2Im (ς∗uςd)(eQtFt + eQbFb) , (B.5)

where

Fq =
Tq(zH±)− Tq(zW )

zH± − zW
, zi ≡

M2
i

m2
t

, (B.6)

and

Tt(z) =
1− 3z

z2

π2

6
+

(
1

z
− 5

2

)
ln z − 1

z
−
(

2− 1

z

)(
1− 1

z

)
Li2(1− z) ,

Tb(z) =
2z − 1

z2

π2

6
+

(
3

2
− 1

z

)
ln z +

1

z
− 1

z

(
2− 1

z

)
Li2(1− z) . (B.7)

This contribution to dd is not affected by the parameter choices in eq. (2.19).

Additionally, there are contributions to the quark EDMs through diagrams which are

similar to those that gave rise to eq. (B.5), but where the virtual quark loop is replaced by a

loop involving the spin-zero fields [82, 167]. These diagrams are proportional to a different

CP -violating parameter than the one encountered so far. Although these diagrams generate

u- and d-quark EDMs of similar size, the contributions from these diagrams are smaller

by a factor of a few than the ones in eqs. (B.2), see ref. [167]. In addition, they do not

contribute to the quark CEDMs which play the dominant role in our analysis. Thus,

under the assumption that the CP -violation parameters are of similar magnitude, these

diagrams are expected to be less important than the CEDMs. Therefore, we neglect them

in our analysis.

In summary, we obtain in the a2HDM with the parameter specifications in eq. (2.19)

that at a high scale µH the d-quark (C)EDM is significantly larger than the corre-

sponding dipole moment of the u quark. The d-quark EDM and CEDM are given by,

putting µH = mt:

dd(mt) = e
Qdmdα

(4π)3v2
Im (ς∗uςd)

(
32

3

[
f

(
m2
t

M2

)
+ g

(
m2
t

M2

)]
+

3

s2
w

|Vud|2|Vtb|2
[
Fb − 2Ft

])
,

d̃d(mt) = −4md
gsαs

(4π)3v2
Im (ς∗uςd)

[
f

(
m2
t

M2

)
+ g

(
m2
t

M2

)]
. (B.8)

They depend on a common unknown factor Im (ς∗uςd) that signifies non-KM CP violation

of the model. By renormalization-group evolution down to the scale µ = Λχ we obtain the

d-quark (C)EDM given in eqs. (2.20) and (2.21).

B.3 Contributions to the Weinberg operator

The leading-order contributions to the Weinberg operator corresponds to diagrams of the

type shown in figure 2(c). From diagrams that involve CP -violating flavor-diagonal neutral
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Higgs boson exchange the coefficient of the Weinberg operator, i.e., the CEDM of the gluon,

receives, in the 2HDM, the following contribution [29, 62, 169]:

dW (mt;ϕ
0) = − 4g3

s

(4π)4v2

∑
q,i

Re yiqIm yiq h(mq, Mi) , (B.9)

where

h(m,M) =
m4

4

∫ 1

0
dx

∫ 1

0
du

u3x3(1− x)

[m2x(1− ux) +M2(1− u)(1− x)]2
. (B.10)

As we restrict ourselves to the parameters of eq. (2.19), this contribution will be propor-

tional to Im(ς∗q ςq) and therefore vanishes.

The exchange of a charged Higgs boson with Yukawa couplings given in eq. (2.20) leads

to diagrams similar to figure 2(c). In this case both a bottom and top quark are present in

the fermion loop. The amplitude involves two different scales, M+ ∼ mt, and mb. One may

evaluate it in the framework of effective field theory [25, 62, 170].25 One can first integrate

out the charged Higgs boson and the top quark. This generates a one-loop contribution to

the bottom quark CEDM. At the bottom quark threshold this b-quark CEDM then induces

a one-loop contribution [25] to dW . The first step gives [62, 169, 170]:

d̃b(mt;H
±) = −gs(mt)

8π2v2
mb(mt)|Vtb|2Im (ςdς

∗
u)

[
xt

(
lnxt

(xt − 1)3
+

xt − 3

2(xt − 1)2

)]
, (B.11)

where xt = m2
t /M

2
+ and mb(mt) is the MS mass of the b quark at the scale µ = mt. At

µ = mb this induces a contribution to the Weinberg operator [25],

dW (mb;H
±) = − g2

s(mb)

32π2mb(mb)
d̃b(mb;H

±) , (B.12)

where mb(mb) denotes the MS mass at µ = mb and d̃b(mb;H
±) is related to d̃b(mt;H

±)

by a renormalization-group factor: d̃b(mb;H
±) = η′W d̃b(mt;H

±) where we introduced the

parameter η′W =
(αs(mt)
αs(mb)

)−19/46 ' 1.3 [24–28].

In summary, we obtain in the a2HDM with the parameter set of eq. (2.19) the following

CEDM dW of the gluon at the scale µ = mb:

dW (mb) = ηW
gsαs

(4π)3v2
|Vtb|2Im (ς∗uςd)

[
xt

(
lnxt

(xt − 1)3
+

xt − 3

2(xt − 1)2

)]
, (B.13)

where the factors of gs and αs are to be evaluated at the scale µ = mb while the parameter

ηW = gs(mt)
gs(mb)

mb(mt)
mb(mb)

η′W =
(αs(mt)
αs(mb)

)14/23 ' 0.67 is the resulting renormalization-group factor

due to the evolution from the scale mt to mb. The renormalization-group evolution of

eq. (B.13) to the scale µ = Λχ then yields dW (Λχ) given in eqs. (2.20) and (2.21).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

25Alternatively, this two-loop amplitude was computed directly in ref. [169]. This result can then by

renormalization-group evolution be evaluated at a low scale.
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