19 research outputs found

    Clinical translation and implementation of optical imaging agents for precision image-guided cancer surgery

    Get PDF
    Introduction The field of tumor-specific fluorescence-guided surgery has seen a significant increase in the development of novel tumor-targeted imaging agents. Studying patient benefit using intraoperative fluorescence-guided imaging for cancer surgery is the final step needed for implementation in standard treatment protocols. Translation into phase III clinical trials can be challenging and time consuming. Recent studies have helped to identify certain waypoints in this transition phase between studying imaging agent efficacy (phase I-II) and proving patient benefit (phase III). Trial initiation Performing these trials outside centers of expertise, thus involving motivated clinicians, training them, and providing feedback on data quality, increases the translatability of imaging agents and the surgical technique. Furthermore, timely formation of a trial team which oversees the translational process is vital. They are responsible for establishing an imaging framework (camera system, imaging protocol, surgical workflow) and clinical framework (disease stage, procedure type, clinical research question) in which the trial is executed. Providing participating clinicians with well-defined protocols with the aim to answer clinically relevant research questions within the context of care is the pinnacle in gathering reliable trial data. Outlook If all these aspects are taken into consideration, tumor-specific fluorescence-guided surgery is expected be of significant value when integrated into the diagnostic work-up, surgical procedure, and follow-up of cancer patients. It is only by involving and collaborating with all stakeholders involved in this process that successful clinical translation can occur. Aim Here, we discuss the challenges faced during this important translational phase and present potential solutions to enable final clinical translation and implementation of imaging agents for image-guided cancer surgery.Surgical oncolog

    Nanobody-targeted photodynamic therapy induces significant tumor regression of trastuzumab-resistant HER2-positive breast cancer, after a single treatment session

    Get PDF
    Rationale: A substantial number of breast cancer patients with an overexpression of the human epidermal growth factor receptor 2 (HER2) have residual disease after neoadjuvant therapy or become resistant to trastuzumab. Photodynamic therapy (PDT) using nanobodies targeted to HER2 is a promising treatment option for these patients. Here we investigate the in vitro and in vivo antitumor efficacy of HER2-targeted nanobody-photosensitizer (PS) conjugate PDT. Methods: Nanobodies targeting HER2 were obtained from phage display selections. Monovalent nanobodies were engineered into a biparatopic construct. The specificity of selected nanobodies was tested in immunofluorescence assays and their affinity was evaluated in binding studies, both performed in a panel of breast cancer cells varying in HER2 expression levels. The selected HER2-targeted nanobodies 1D5 and 1D5-18A12 were conjugated to the photosensitizer IRDye700DX and tested in in vitro PDT assays. Mice bearing orthotopic HCC1954 trastuzumab-resistant tumors with high HER2 expression or MCF-7 tumors with low HER2 expression were intravenously injected with nanobody-PS conjugates. Quantitative fluorescence spectroscopy was performed for the determination of the local pharmacokinetics of the fluorescence conjugates. After nanobody-PS administration, tumors were illuminated to a fluence of 100 J∙cm-2, with a fluence rate of 50 mW∙cm-2, and thereafter tumor growth was measured with a follow-up until 30 days. Results: The selected nanobodies remained functional after conjugation to the PS, binding specifically and with high affinity to HER2-positive cells. Both nanobody-PS conjugates potently and selectively induced cell death of HER2 overexpressing cells, either sensitive or resistant to trastuzumab, with low nanomolar LD50 values. In vivo, quantitative fluorescence spectroscopy showed specific accumulation of nanobody-PS conjugates in HCC1954 tumors and indicated 2 h post injection as the most suitable time point to apply light. Nanobody-targeted PDT with 1D5-PS and 1D5-18A12-PS induced significant tumor regression of trastuzumab-resistant high HER2 expressing tumors, whereas in low HER2 expressing tumors only a slight growth delay was observed. Conclusion: Nanobody-PS conjugates accumulated selectively in vivo and their fluorescence could be detected through optical imaging. Upon illumination, they selectively induced significant tumor regression of HER2 overexpressing tumors with a single treatment session. Nanobody-targeted PDT is therefore suggested as a new additional treatment for HER2-positive breast cancer, particularly of interest for trastuzumab-resistant HER2-positive breast cancer. Further studies are now needed to assess the value of this approach in c

    <sup>89</sup>Zr-Trastuzumab PET/CT Imaging of HER2-Positive Breast Cancer for Predicting Pathological Complete Response after Neoadjuvant Systemic Therapy:A Feasibility Study

    Get PDF
    Background: Approximately 20% of invasive ductal breast malignancies are human epidermal growth factor receptor 2 (HER2)-positive. These patients receive neoadjuvant systemic therapy (NAT) including HER2-targeting therapies. Up to 65% of patients achieve a pathological complete response (pCR). These patients might not have needed surgery. However, accurate preoperative identification of a pCR remains challenging. A radiologic complete response (rCR) on MRI corresponds to a pCR in only 73% of patients. The current feasibility study investigates if HER2-targeted PET/CT-imaging using Zirconium-89 (89Zr)-radiolabeled trastuzumab can be used for more accurate NAT response evaluation. Methods: HER2-positive breast cancer patients scheduled to undergo NAT and subsequent surgery received a 89Zr-trastuzumab PET/CT both before (PET/CT-1) and after (PET/CT-2) NAT. Qualitative and quantitative response evaluation was performed. Results: Six patients were enrolled. All primary tumors could be identified on PET/CT-1. Four patients had a pCR and two a pathological partial response (pPR) in the primary tumor. Qualitative assessment of PET/CT resulted in an accuracy of 66.7%, compared to 83.3% of the standard-of-care MRI. Quantitative assessment showed a difference between the SUVR on PET/CT-1 and PET/CT-2 (ΔSUVR) in patients with a pPR and pCR of −48% and −90% (p = 0.133), respectively. The difference in tumor-to-blood ratio on PET/CT-1 and PET/CT-2 (ΔTBR) in patients with pPR and pCR was −79% and −94% (p = 0.133), respectively. Three patients had metastatic lymph nodes at diagnosis that were all identified on PET/CT-1. All three patients achieved a nodal pCR. Qualitative assessment of the lymph nodes with PET/CT resulted in an accuracy of 66.7%, compared to 50% of the MRI. Conclusions: NAT response evaluation using 89Zr-trastuzumab PET/CT is feasible. In the current study, qualitative assessment of the PET/CT images is not superior to standard-of-care MRI. Our results suggest that quantitative assessment of 89Zr-trastuzumab PET/CT has potential for a more accurate response evaluation of the primary tumor after NAT in HER2-positive breast cancer.</p

    A multimodal molecular imaging approach targeting urokinase plasminogen activator receptor for the diagnosis, resection and surveillance of urothelial cell carcinoma

    Get PDF
    With a 5-year recurrence rate of 30-78%, urothelial cell carcinoma (UCC) rates amongst the highest of all solid malignancies. Consequently, after transurethral resection, patients are subjugated to life-long endoscopic surveillance. A multimodal near-infrared (NIR) fluorescence-based imaging strategy can improve diagnosis, resection and surveillance, hence increasing quality of life.Methods: Expression of urokinase plasminogen activator receptor (uPAR) and epithelial cell adhesion molecule (EpCAM) are determined on paraffin-embedded human UCC using immunohistochemistry and on UCC cell lines by flow cytometry. MNPR-101, a humanised monoclonal antibody targeting uPAR is conjugated to IRDye800CW and binding is validated in vitro using surface plasmon resonance and cell-based binding assays. In vivo NIR fluorescence and photoacoustic three-dimensional (3D) imaging are performed with subcutaneously growing human UM-UC-31uc2 cells in BALB/c-nude mice. The translational potential is confirmed in a metastasising UM-UC-31uc2 orthotopic mouse model. InfliximabIRDye800CW and rituximab-IRDye800CW are used as controls.Results: UCCs show prominent uPAR expression at the tumour-stroma interface and EpCAM on epithelial cells. uPAR and EpCAM are expressed by 6/7 and 4/7 UCC cell lines, respectively. In vitro, MNPR-101-IRDye800CW has a picomolar affinity for domain 2-3 of uPAR. In vivo fluorescence imaging with MNPR-101-IRDye800CW, specifically delineates both subcutaneous and orthotopic tumours with tumour-to-background ratios reaching as high as 6.8, differing significantly from controls (p < 0.0001). Photoacoustic 3D in depth imaging confirms the homogenous distribution of MNPR-101-IRDye800CW through the tumour.Conclusions: MNPR-101-IRDye800CW is suitable for multimodal imaging of UCC, awaiting clinical translation. (C) 2021 The Author(s). Published by Elsevier Ltd.Surgical oncolog

    Multimodal image-guided surgery of HER2-positive breast cancer using [In-111]In-DTPA-trastuzumab-IRDye800CW in an orthotopic breast tumor model

    No full text
    Background Combining modalities using dual-labeled antibodies may allow preoperative and intraoperative tumor localization and could be used in image-guided surgery to improve complete tumor resection. Trastuzumab is a monoclonal antibody against the human epidermal growth factor-2 (HER2) receptor and dual-labeled trastuzumab with both a fluorophore (IRDye800CW) and a radioactive label (In-111) can be used for multimodal imaging of HER2-positive breast cancer. The aim of this study was to demonstrate the feasibility of HER2-targeted multimodal imaging using [In-111]In-DTPA-trastuzumab-IRDye800CW in an orthotopic breast cancer model. Methods Trastuzumab was conjugated with p-isothiocyanatobenzyl (ITC)-diethylenetriaminepentaacetic acid (DTPA) and IRDye800CW-NHS ester and subsequently labeled with In-111. In a dose escalation study, the biodistribution of 10, 30, and 100 mu g [In-111]In-DTPA-trastuzumab-IRDye800CW was determined 48 h after injection in BALB/c nude mice with orthotopic high HER2-expressing tumors. Also, a biodistribution study was performed in a low HER2-expressing breast cancer model. In addition, multimodal image-guided surgery was performed in each group. Autoradiography, fluorescence microscopy, and immunohistochemically stained slices of the tumors were compared for co-localization of tumor tissue, HER2 expression, fluorescence, and radiosignal. Results Based on the biodistribution data, a 30 mu g dose of dual-labeled trastuzumab (tumor-to-blood ratio 13 +/- 2) was chosen for all subsequent studies. [In-111]In-DTPA-trastuzumab-IRDye800CW specifically accumulated in orthotopic HER2-positive BT474 tumors (101 +/- 7 %IA/g), whereas uptake in orthotopic low HER2-expressing MCF7 tumor was significantly lower (1.2 +/- 0.2 %IA/g, p = 0.007). BT474 tumors could clearly be visualized with both micro-SPECT/CT, fluorescence imaging and subsequently, image-guided resection was performed. Immunohistochemical analyses of BT474 tumors demonstrated correspondence in fluorescence, radiosignal, and high HER2 expression. Conclusions Dual-labeled trastuzumab showed specific accumulation in orthotopic HER2-positive BT474 breast tumors with micro-SPECT/CT and fluorescence imaging and enabled image-guided tumor resection. In the clinical setting, [In-111]In-DTPA-trastuzumab-IRDye800CW could be valuable for preoperative detection of (metastatic) tumors by SPECT/CT imaging, and intraoperative localization by using a gamma probe and fluorescence image-guided surgery to improve radical resection of tumor tissue in patients with HER2-positive tumors.Surgical oncolog

    Reduced Circumferential Resection Margin Involvement in Rectal Cancer Surgery: Results of the Dutch Surgical Colorectal Audit

    Get PDF
    Contains fulltext : 153834.pdf (publisher's version ) (Open Access)BACKGROUND: The circumferential resection margin (CRM) is a significant prognostic factor for local recurrence, distant metastasis, and survival after rectal cancer surgery. Therefore, availability of this parameter is essential. Although the Dutch total mesorectal excision trial raised awareness about CRM in the late 1990s, quality assurance on pathologic reporting was not available until the Dutch Surgical Colorectal Audit (DSCA) started in 2009. The present study describes the rates of CRM reporting and involvement since the start of the DSCA and analyzes whether improvement of these parameters can be attributed to the audit. METHODS: Data from the DSCA (2009-2013) were analyzed. Reporting of CRM and CRM involvement was plotted for successive years, and variations of these parameters were analyzed in a funnelplot. Predictors of CRM involvement were determined in univariable analysis and the independent influence of year of registration on CRM involvement was analyzed in multivariable analysis. RESULTS: A total of 12,669 patients were included for analysis. The mean percentage of patients with a reported CRM increased from 52.7% to 94.2% (2009-2013) and interhospital variation decreased. The percentage of patients with CRM involvement decreased from 14.2% to 5.6%. In multivariable analysis, the year of DSCA registration remained a significant predictor of CRM involvement. CONCLUSIONS: After the introduction of the DSCA, a dramatic improvement in CRM reporting and a major decrease of CRM involvement after rectal cancer surgery have occurred. This study suggests that a national quality assurance program has been the driving force behind these achievements

    Small Molecules for Multi-Wavelength Near-Infrared Fluorescent Mapping of Regional and Sentinel Lymph Nodes in Colorectal Cancer Staging

    No full text
    Assessing lymph node (LN) status during tumor resection is fundamental for the staging of colorectal cancer. Current guidelines require a minimum of 12 LNs to be harvested during resection and ultra-staging regional lymph nodes by sentinel lymph node (SLN) assessment is being extensively investigated. The current study presents novel near-infrared (NIR) fluorescent dyes for simultaneous pan lymph node (PanLN; regional) and SLN mapping. PanLN-Forte was intravenously injected in mice and assessed for accumulation in regional LNs. SLN800 was injected intradermally in mice, after which the collection and retention of fluorescence in SLNs were measured using indocyanine green (ICG) and its precursor, SLN700, as references. LNs in the cervical, inguinal, jejunal, iliac, and thoracic basins could clearly be distinguished after a low dose intravenous injection of PanLN-Forte. Background fluorescence was significantly lower compared to the parent compound ZW800-3A (p < 0.001). SLN700 and SLN800 specifically targeted SLNs with fluorescence being retained over 40-fold longer than the current clinically used agent ICG. Using SLN700 and SLN800, absolute fluorescence in SLN was at least 10 times higher than ICG in second-tier nodes, even at 1 hour post-injection. Histologically, the fluorescent signal localized in the LN medulla (PanLN-Forte) or sinus entry (SLN700/SLN800). PanLN-Forte and SLN800 appear to be optimal for real-time NIR fluorescence imaging of regional and SLNs, respectively.Surgical oncolog

    Intraoperative detection of colorectal and pancreatic liver metastases using SGM-101, a fluorescent antibody targeting CEA

    No full text
    Background: Fluorescence-guided surgery can provide surgeons with an imaging tool for real-time intraoperative tumor detection. SGM-101, an anti-CEA antibody labelled with a fluorescent dye, is a tumor-specific imaging agent that can aid in improving detection and complete resection for CEA-positive tumors. In this study, the performance of SGM-101 for the detection of colorectal and pancreatic liver metastases was investigated.Methods: In this open-label, non-randomized, single-arm pilot study, patients were included with liver metastases from colorectal origin and intraoperatively detected liver metastases from pancreatic origin (during planned pancreatic surgery). SGM-101 was administered two to four days before the scheduled surgery as a single intravenous injection. Intraoperative fluorescence imaging was performed using the Quest Spectrum (R) imaging system. The performance of SGM-101 was assessed by measuring the intraoperative fluorescence signal and comparing this to histopathology.Results: A total of 19 lesions were found in 11 patients, which were all suspected as malignant in white light and subsequent fluorescence inspection. Seventeen lesions were malignant with a mean tumor-tobackground ratio of 1.7. The remaining two lesions were false-positives as proven by histology.Conclusion: CEA-targeted fluorescence-guided intraoperative tumor detection with SGM-101 is feasible for the detection of colorectal and pancreatic liver metastases. (C) 2020 Published by Elsevier Ltd.Surgical oncolog
    corecore