160 research outputs found

    Verification of the Thomson-Onsager reciprocity relation for spin caloritronics

    Get PDF
    We investigate the Thomson-Onsager relation between the spin-dependent Seebeck and spin-dependent Peltier effect. To maintain identical device and measurement conditions we measure both effects in a single Ni80_{80}Fe20_{20}/Cu/Ni80_{80}Fe20_{20} nanopillar spin valve device subjected to either an electrical or a thermal bias. In the low bias regime, we observe similar spin signals as well as background responses, as required by the Onsager reciprocity relation. However, at large biases, deviation from reciprocity occurs due to dominant nonlinear contribution of the temperature dependent transport coefficients. By systematic modeling of these nonlinear thermoelectric effects and measuring higher order thermoelectric responses for different applied biases, we identify the transition between the two regimes as the point at which Joule heating start to dominate over Peltier heating. Our results signify the importance of local equilibrium for the validity of this phenomenological reciprocity relation.Comment: 5 pages, 5 figure

    Quality and value chain analyses of Ethiopian coffee

    Get PDF
    The objective of this paper is to analyze the quality and value chain of Ethiopian coffee in a way to identify opportunities that maximize the benefits from the sector. First the Ethiopian coffee sector is overviewed and then analyzed qualitatively and quantitatively starting from the crop up to the cup based on data collected from secondary sources. As a result, in spite of the comparative advantage in flavor, the Ethiopian green coffee price in the international market is lower than other countries’ price. In addition, actors are not fairly priced because of quality and value addition. The causes for poor quality are mainly associated with harvesting and post-harvesting practice including collection, dry and wet processing, storage and transportation. The value chain actors will play a critical role to increases the profit plow back in the Ethiopian coffee sector and then will significantly improve living standards of the poor who are at the source of the chain.Key words – Coffee, Quality, Value additio

    Comparison of the magneto-Peltier and magneto-Seebeck effects in magnetic tunnel junctions

    Get PDF
    Understanding heat generation and transport processes in a magnetic tunnel junction (MTJ) is a significant step towards improving its application in current memory devices. Recent work has experimentally demonstrated the magneto-Seebeck effect in MTJs, where the Seebeck coefficient of the junction varies as the magnetic configuration changes from a parallel (P) to an anti-parallel (AP) configuration. Here we report the study on its as-yet-unexplored reciprocal effect, the magneto-Peltier effect, where the heat flow carried by the tunneling electrons is altered by changing the magnetic configuration of the MTJ. The magneto-Peltier signal that reflects the change in the temperature difference across the junction between the P and AP configurations scales linearly with the applied current in the small bias but is greatly enhanced in the large bias regime, due to higher-order Joule heating mechanisms. By carefully extracting the linear response which reflects the magneto-Peltier effect, and comparing it with the magneto-Seebeck measurements performed on the same device, we observe results consistent with Onsager reciprocity. We estimate a magneto-Peltier coefficient of 13.4 mV in the linear regime using a three-dimensional thermoelectric model. Our result opens up the possibility of programmable thermoelectric devices based on the Peltier effect in MTJs

    Spin-dependent Seebeck coefficients of Ni_{80}Fe_{20} and Co in nanopillar spin valves

    Get PDF
    We have experimentally determined the spin-dependent Seebeck coefficient of permalloy (Ni_{80}Fe_{20}) and cobalt (Co) using nanopillar spin valve devices. The devices were specifically designed to completely separate heat related effects from charge related effects. A pure heat current through the nanopillar spin valve, a stack of two ferromagnetic layers (F) separated by a non-magnetic layer (N), leads to a thermovoltage proportional to the spin-dependent Seebeck coefficient S_{S}=S_{\uparrow}-S_{\downarrow} of the ferromagnet, where S_{\uparrow} and S_{\downarrow} are the Seebeck coefficient for spin-up and spin-down electrons. By using a three-dimensional finite-element model (3D-FEM) based on spin-dependent thermoelectric theory, whose input material parameters were measured in separate devices, we were able to accurately determine a spin-dependent Seebeck coefficient of -1.8 microvolt/Kelvin and -4.5 microvolt/Kelvin for cobalt and permalloy, respectively corresponding to a Seebeck coefficient polarization P_{S}=S_{S}/S_{F} of 0.08 and 0.25, where S_{F} is the Seebeck coefficient of the ferromagnet. The results are in agreement with earlier theoretical work in Co/Cu multilayers and spin-dependent Seebeck and spin-dependent Peltier measurements in Ni_{80}Fe_{20}/Cu spin valve structures

    Direct electronic measurement of Peltier cooling and heating in graphene

    Get PDF
    Thermoelectric effects allow the generation of electrical power from waste heat and the electrical control of cooling and heating. Remarkably, these effects are also highly sensitive to the asymmetry in the density of states around the Fermi energy and can therefore be exploited as probes of distortions in the electronic structure at the nanoscale. Here we consider two-dimensional graphene as an excellent nanoscale carbon material for exploring the interaction between electronic and thermal transport phenomena, by presenting a direct and quantitative measurement of the Peltier component to electronic cooling and heating in graphene. Thanks to an architecture including nanoscale thermometers, we detected Peltier component modulation of up to 15 mK for currents of 20 μ\muA at room temperature and observed a full reversal between Peltier cooling and heating for electron and hole regimes. This fundamental thermodynamic property is a complementary tool for the study of nanoscale thermoelectric transport in two-dimensional materials.Comment: Final version published in Nature Communications under a Creative Commons Attribution 4.0 International Licens

    Morphological, Structural, and Optical Properties of Single-Phase Cu(In,Ga)Se 2

    Get PDF
    The relatively small band gap values (~1 eV) of CuInSe2 thin films limit the conversion efficiencies of completed CuInSe2/CdS/ZnO solar cell devices. In the case of traditional two-stage growth techniques, limited success has been achieved to homogeneously increase the band gap by substituting indium with gallium. In this study, thermal evaporation of InSe/Cu/Gase precursors was exposed to an elemental Se vapour under defined conditions. This technique produced large-grained, single-phase Cu(In,Ga)Se2 thin films with a high degree of in-depth compositional uniformity. The selenization temperature, ramp time, reaction period, and the effusion cell temperature with respect to the Cu(In,Ga)Se2 films were optimized in this study. The homogeneous incorporation of Ga into CuInSe2 led to a systematic shift in the lattice spacing parameters and band gap of the absorber films. Under optimized conditions, gallium in cooperation resulted only in a marginal decrease in the grain size, X-ray diffraction studies confirmed single-phase Cu(In,Ga)Se2 material, and X-ray photoluminescence spectroscopy in-depth profiling revealed a uniform distribution of the elements through the entire depth of the alloy. From these studies optimum selenization conditions were determined for the deposition of homogeneous Cu(In,Ga)Se2 thin films with optimum band gap values between 1.01 and 1.21 eV

    Observation of the spin Peltier effect

    Full text link
    We report the observation of the spin Peltier effect (SPE) in the ferrimagnetic insulator Yttrium Iron Garnet (YIG), i.e. a heat current generated by a spin current flowing through a Platinum (Pt)|YIG interface. The effect can be explained by the spin torque that transforms the spin current in the Pt into a magnon current in the YIG. Via magnon-phonon interactions the magnetic fluctuations modulate the phonon temperature that is detected by a thermopile close to the interface. By finite-element modelling we verify the reciprocity between the spin Peltier and spin Seebeck effect. The observed strong coupling between thermal magnons and phonons in YIG is attractive for nanoscale cooling techniques.Comment: 5 pages, 3 figures, 4 pages supplementary information, 4 supplementary figure

    Management of undescended testes: a retrospective study from a tertiary hospital in Ethiopia

    Get PDF
    Background: Undescended testis is one of the commonest congenital malformations seen in boys. The aim of this study is to evaluate the pattern of presentation, approach to diagnosis, treatment and follow up in Tikur Anbesa Specialized Hospital, a tertiary teaching hospital in Ethiopia.Methods: This is a retrospective cross sectional study of all boys with undescended testis operated in Tikur Anbesa Specialized Hospital between September 2012 and August 2014.Results: Of 82 boys operated within the study period, 66 boys with 78 undescended testes are studied. Twenty-six percent (17/66)came before the age of 2 years, while the majority of the study group, 50% (33/66), presented beyond 5 years of age. Of the 17 boys brought to the hospital before 2 years, only 41% (7/17) them were treated before the age of two years. The majority 89% (59/66) of the boys were treated after 2 years of age. Seventy-one testes of 78 [91%] were in the inguinal canal, 5 were intra-abdominal and 2 were absent. 46% (36/78) were on the left side, 29% (23/78) on the right side and the rest were bilateral. Among the 54 boys who had ultrasound examination, the ultrasound report is consistent with operative findings in 33 [61%]. Associated congenital malformations were found in 31.8% (21/66) of the boys. Hypospadia was the predominant malformation comprising 38% (8/21) of the total congenital malformations. Orchidopexy was done for 82% (64/78) of the total testes, orchiectomy was done for 9% (7/78) and biopsy was taken in 1 case. Among the total operated boys only 62% (41/66) were followed in our clinic; of those who had follow up 10% (4/41) testes atrophied and 1 [2%] testis retracted.Conclusion: Boys with undescended testes present and are treated late in Tikur Anbesa Hospital. As opposed to the literatures most of the undescended testes were found on the left side. Ultrasound examination cannot be the only mode of examination for undescended testes as it misses more than one third of the cases. Hypospadia is the commonest associated congenital malformation. Post operative follow up is very poor after treatment for undescended teste

    Spatiotemporal variability of soil moisture over Ethiopia and its teleconnections with remote and local drivers

    Get PDF
    Soil moisture is one of the essential climate variables with a potential impact on local climate variability. Despite the importance of soil moisture, studies on soil moisture characteristics in Ethiopia are less documented. In this study, the spatiotemporal variability of Ethiopian soil moisture (SM) has been characterized, and its local and remote influential driving factors are investigated. An empirical orthogonal function (EOF) and KMeans clustering algorithm have been employed to classify the large domain into homogeneous zones. Complex maximum covariance analysis (CMCA) is applied to evaluate the covariability between SM and selected local and remote variables such as rainfall (RF), evapotranspiration (ET), and sea surface temperature (SST). Inter-comparison among SM datasets highlight that the FLDAS dataset better depicts the country’s SM spatial and temporal distribution (i.e., a correlation coefficient r=0.95 , rmsd=0.04m3m−3 with observations). Results also indicate that regions located in northeastern Ethiopia are drier irrespective of the season (JJAS, MAM, and OND) considered. In contrast, the western part of the country consistently depicted a wetter condition in all seasons. During summer (JJAS), the soil moisture variability is characterized by a strong east–west spatial contrast. The highest and lowest soil moisture values were observed across the country’s central western and eastern parts, respectively. Furthermore, analyses indicate that interannual variability of SM is dictated substantially by RF, though the impact on some regions is weaker. It is also found that ET likely drives the SM in the eastern part of Ethiopia due to a higher atmospheric moisture demand that ultimately invokes changes in surface humidity and rainfall. A composite analysis based on the extreme five wettest and driest SM years revealed a similar spatial distribution of wet SM with positive anomalies of RF across the country and ET over the southern regions. Remote SSTs are also found to have a significant influence on SM distribution. In particular, equatorial central Pacific and western Indian oceans SST anomalies are predominant factors for spatiotemporal SM variations over the country. Major global oceanic indices: Oceanic Nino Index (ONI), Indian Ocean Dipole (IOD), Pacific warm pool (PACWARMPOOL), and Pacific Decadal Oscillations (PDO) are found to be closely associated with the SM anomalies in various parts of the country. The associationship between these remote SST anomalies and local soil moisture is via large-scale atmospheric circulations that are linked to regional factors such as precipitation and temperature anomalies.publishedVersio
    • …
    corecore