11 research outputs found
Can small details bring big success? Construal levels as academic goal strategies
One avenue to help students reach educational goals is implementation intentions, a tool encouraging
planning the “when, where, and how” of goal-oriented actions (Gollwitzer, 1999). However,
implementation intentions need validating outside of the laboratory (Gollwitzer & Sheeran, 2006). To
help do so, they can be viewed through Construal-Level Theory (CLT), which explains why we may have
trouble setting intentions before we can fulfill them (Trope & Liberman 2010). A study was conducted
wherein 56 participants from a section of PSYC 330 either wrote about their college study habits or
completed implementation intentions preparing them to study for an upcoming exam. As they wrote,
participants also completed measures of construal-levels. It was hypothesized that implementation
intentions would immediately reduce construal levels and, over the following week, increase time
students studied for their exam and the score they received. None of these hypotheses were supported;
implementation intentions had no effect on study habits, exam scores, or construal levels. Results and
their implications are discussed
Exoplanet Biosignatures: Understanding Oxygen as a Biosignature in the Context of Its Environment
Here we review how environmental context can be used to interpret whether O2
is a biosignature in extrasolar planetary observations. This paper builds on
the overview of current biosignature research discussed in Schwieterman et al.
(2017), and provides an in-depth, interdisciplinary example of biosignature
identification and observation that serves as a basis for the development of
the general framework for biosignature assessment described in Catling et al.,
(2017). O2 is a potentially strong biosignature that was originally thought to
be an unambiguous indicator for life at high-abundance. We describe the
coevolution of life with the early Earth's environment, and how the interplay
of sources and sinks in the planetary environment may have resulted in
suppression of O2 release into the atmosphere for several billion years, a
false negative for biologically generated O2. False positives may also be
possible, with recent research showing potential mechanisms in exoplanet
environments that may generate relatively high abundances of atmospheric O2
without a biosphere being present. These studies suggest that planetary
characteristics that may enhance false negatives should be considered when
selecting targets for biosignature searches. Similarly our ability to interpret
O2 observed in an exoplanetary atmosphere is also crucially dependent on
environmental context to rule out false positive mechanisms. We describe future
photometric, spectroscopic and time-dependent observations of O2 and the
planetary environment that could increase our confidence that any observed O2
is a biosignature, and help discriminate it from potential false positives. By
observing and understanding O2 in its planetary context we can increase our
confidence in the remote detection of life, and provide a model for
biosignature development for other proposed biosignatures.Comment: 55 pages. The paper is the second in a series of 5 review manuscripts
of the NExSS Exoplanet Biosignatures Workshop. Community commenting is
solicited at https://nexss.info/groups/ebww
Life Beyond the Solar System: Remotely Detectable Biosignatures
For the first time in human history, we will soon be able to apply to the scientific method to the question "Are We Alone?" The rapid advance of exoplanet discovery, planetary systems science, and telescope technology will soon allow scientists to search for life beyond our Solar System through direct observation of extrasolar planets. This endeavor will occur alongside searches for habitable environments and signs of life within our Solar System. While these searches are thematically related and will inform each other, they will require separate observational techniques. The search for life on exoplanets holds potential through the great diversity of worlds to be explored beyond our Solar System. However, there are also unique challenges related to the relatively limited data this search will obtain on any individual world
Parallel Evolution of Tobramycin Resistance Across Species and Environments
Different species exposed to a common stress may adapt by mutations in shared pathways or in unique systems, depending on how past environments have molded their genomes. Understanding how diverse bacterial pathogens evolve in response to an antimicrobial treatment is a pressing example of this problem, where discovery of molecular parallelism could lead to clinically useful predictions. Evolution experiments with pathogens in environments containing antibiotics, combined with periodic whole-population genome sequencing, can be used to identify many contending routes to antimicrobial resistance. We separately propagated two clinically relevant Gram-negative pathogens, Pseudomonas aeruginosa and Acinetobacter baumannii, in increasing concentrations of tobramycin in two different environments each: planktonic and biofilm. Independently of the pathogen, the populations adapted to tobramycin selection by parallel evolution of mutations in fusA1, encoding elongation factor G, and ptsP, encoding phosphoenolpyruvate phosphotransferase. As neither gene is a direct target of this aminoglycoside, mutations to either are unexpected and underreported causes of resistance. Additionally, both species acquired antibiotic resistance-associated mutations that were more prevalent in the biofilm lifestyle than in the planktonic lifestyle; these mutations were in electron transport chain components in A. baumannii and lipopolysaccharide biosynthesis enzymes in P. aeruginosa populations. Using existing databases, we discovered site-specific parallelism of fusA1 mutations that extends across bacterial phyla and clinical isolates. This study suggests that strong selective pressures, such as antibiotic treatment, may result in high levels of predictability in molecular targets of evolution, despite differences between organisms’ genetic backgrounds and environments
Experimental Evolution In Vivo To Identify Selective Pressures during Pneumococcal Colonization
ABSTRACT Experimental evolution is a powerful technique to understand how populations evolve from selective pressures imparted by the surrounding environment. With the advancement of whole-population genomic sequencing, it is possible to identify and track multiple contending genotypes associated with adaptations to specific selective pressures. This approach has been used repeatedly with model species in vitro, but only rarely in vivo. Herein we report results of replicate experimentally evolved populations of Streptococcus pneumoniae propagated by repeated murine nasal colonization with the aim of identifying gene products under strong selection as well as the population genetic dynamics of infection cycles. Frameshift mutations in one gene, dltB, responsible for incorporation of d-alanine into teichoic acids on the bacterial surface, evolved repeatedly and swept to high frequency. Targeted deletions of dltB produced a fitness advantage during initial nasal colonization coupled with a corresponding fitness disadvantage in the lungs during pulmonary infection. The underlying mechanism behind the fitness trade-off between these two niches was found to be enhanced adherence to respiratory cells balanced by increased sensitivity to host-derived antimicrobial peptides, a finding recapitulated in the murine model. Additional mutations that are predicted to affect trace metal transport, central metabolism, and regulation of biofilm production and competence were also selected. These data indicate that experimental evolution can be applied to murine models of pathogenesis to gain insight into organism-specific tissue tropisms. IMPORTANCE Evolution is a powerful force that can be experimentally harnessed to gain insight into how populations evolve in response to selective pressures. Herein we tested the applicability of experimental evolutionary approaches to gain insight into how the major human pathogen Streptococcus pneumoniae responds to repeated colonization events using a murine model. These studies revealed the population dynamics of repeated colonization events and demonstrated that in vivo experimental evolution resulted in highly reproducible trajectories that reflect the environmental niche encountered during nasal colonization. Mutations impacting the surface charge of the bacteria were repeatedly selected during colonization and provided a fitness benefit in this niche that was counterbalanced by a corresponding fitness defect during lung infection. These data indicate that experimental evolution can be applied to models of pathogenesis to gain insight into organism-specific tissue tropisms
Recommended from our members
Detection of Mutations in Barrett’s Esophagus Before Progression to High-Grade Dysplasia or Adenocarcinoma
Background & aimsBarrett's esophagus (BE) is the greatest risk factor for esophageal adenocarcinoma (EAC), but only a small proportion of patients with BE develop cancer. Biomarkers might be able to identify patients at highest risk of progression. We investigated genomic differences in surveillance biopsies collected from patients whose BE subsequently progressed compared to patients whose disease did not progress.MethodsWe performed a retrospective case-control study of 24 patients with BE that progressed to high-grade dysplasia (HGD, n = 14) or EAC (n = 10). The control group (n = 73, called non-progressors) comprised patients with BE and at least 5 years of total endoscopic biopsy surveillance without progression to HGD or EAC. From each patient, we selected a single tissue sample obtained more than 1 year before progression (cases) or more than 2 years before the end of follow-up (controls). Pathogenic mutations, gene copy numbers, and ploidy were compared between samples from progressors and non-progressors.ResultsTP53 mutations were detected in 46% of samples from progressors and 5% of non-progressors. In this case-control sample set, TP53 mutations in BE tissues increased the adjusted risk of progression 13.8-fold (95% confidence interval, 3.2-61.0) (P < .001). We did not observe significant differences in ploidy or copy-number profile between groups. We identified 147 pathogenic mutations in 57 distinct genes-the average number of pathogenic mutations was higher in samples from progressors (n = 2.5) than non-progressors (n = 1.2) (P < .001). TP53 and other somatic mutations were recurrently detected in samples with limited copy-number changes (aneuploidy).ConclusionsIn genomic analyses of BE tissues from patients with or without later progression to HGD or EAC, we found significantly higher numbers of TP53 mutations in BE from patients with subsequent progression. These mutations were frequently detected before the onset of dysplasia or substantial changes in copy number
Recommended from our members
Exoplanet Biosignatures: Understanding Oxygen as a Biosignature in the Context of Its Environment
Here we review how environmental context can be used to interpret whether O2
is a biosignature in extrasolar planetary observations. This paper builds on
the overview of current biosignature research discussed in Schwieterman et al.
(2017), and provides an in-depth, interdisciplinary example of biosignature
identification and observation that serves as a basis for the development of
the general framework for biosignature assessment described in Catling et al.,
(2017). O2 is a potentially strong biosignature that was originally thought to
be an unambiguous indicator for life at high-abundance. We describe the
coevolution of life with the early Earth's environment, and how the interplay
of sources and sinks in the planetary environment may have resulted in
suppression of O2 release into the atmosphere for several billion years, a
false negative for biologically generated O2. False positives may also be
possible, with recent research showing potential mechanisms in exoplanet
environments that may generate relatively high abundances of atmospheric O2
without a biosphere being present. These studies suggest that planetary
characteristics that may enhance false negatives should be considered when
selecting targets for biosignature searches. Similarly our ability to interpret
O2 observed in an exoplanetary atmosphere is also crucially dependent on
environmental context to rule out false positive mechanisms. We describe future
photometric, spectroscopic and time-dependent observations of O2 and the
planetary environment that could increase our confidence that any observed O2
is a biosignature, and help discriminate it from potential false positives. By
observing and understanding O2 in its planetary context we can increase our
confidence in the remote detection of life, and provide a model for
biosignature development for other proposed biosignatures
Recommended from our members
Exoplanet Biosignatures: Understanding Oxygen as a Biosignature in the Context of Its Environment.
We describe how environmental context can help determine whether oxygen (O2) detected in extrasolar planetary observations is more likely to have a biological source. Here we provide an in-depth, interdisciplinary example of O2 biosignature identification and observation, which serves as the prototype for the development of a general framework for biosignature assessment. Photosynthetically generated O2 is a potentially strong biosignature, and at high abundance, it was originally thought to be an unambiguous indicator for life. However, as a biosignature, O2 faces two major challenges: (1) it was only present at high abundance for a relatively short period of Earth's history and (2) we now know of several potential planetary mechanisms that can generate abundant O2 without life being present. Consequently, our ability to interpret both the presence and absence of O2 in an exoplanetary spectrum relies on understanding the environmental context. Here we examine the coevolution of life with the early Earth's environment to identify how the interplay of sources and sinks may have suppressed O2 release into the atmosphere for several billion years, producing a false negative for biologically generated O2. These studies suggest that planetary characteristics that may enhance false negatives should be considered when selecting targets for biosignature searches. We review the most recent knowledge of false positives for O2, planetary processes that may generate abundant atmospheric O2 without a biosphere. We provide examples of how future photometric, spectroscopic, and time-dependent observations of O2 and other aspects of the planetary environment can be used to rule out false positives and thereby increase our confidence that any observed O2 is indeed a biosignature. These insights will guide and inform the development of future exoplanet characterization missions. Key Words: Biosignatures-Oxygenic photosynthesis-Exoplanets-Planetary atmospheres. Astrobiology 18, 630-662
Recommended from our members
Life Beyond the Solar System: Remotely Detectable Biosignatures
For the first time in human history, we will soon be able to apply the
scientific method to the question "Are We Alone?" The rapid advance of
exoplanet discovery, planetary systems science, and telescope technology will
soon allow scientists to search for life beyond our Solar System through direct
observation of extrasolar planets. This endeavor will occur alongside searches
for habitable environments and signs of life within our Solar System. While the
searches are thematically related and will inform each other, they will require
separate observational techniques. The search for life on exoplanets holds
potential through the great diversity of worlds to be explored beyond our Solar
System. However, there are also unique challenges related to the relatively
limited data this search will obtain on any individual world. This white paper
reviews the scientific community's ability to use data from future telescopes
to search for life on exoplanets. This material summarizes products from the
Exoplanet Biosignatures Workshop Without Walls (EBWWW). The EBWWW was
constituted by a series of online and in person activities, with participation
from the international exoplanet and astrobiology communities, to assess state
of the science and future research needs for the remote detection of life on
planets outside our Solar System