119 research outputs found
Dysfunction of cortical GABAergic neurons leads to sensory hyper-reactivity in a Shank3 mouse model of ASD.
Hyper-reactivity to sensory input is a common and debilitating symptom in individuals with autism spectrum disorders (ASD), but the neural basis underlying sensory abnormality is not completely understood. Here we examined the neural representations of sensory perception in the neocortex of a Shank3B-/- mouse model of ASD. Male and female Shank3B-/- mice were more sensitive to relatively weak tactile stimulation in a vibrissa motion detection task. In vivo population calcium imaging in vibrissa primary somatosensory cortex (vS1) revealed increased spontaneous and stimulus-evoked firing in pyramidal neurons but reduced activity in interneurons. Preferential deletion of Shank3 in vS1 inhibitory interneurons led to pyramidal neuron hyperactivity and increased stimulus sensitivity in the vibrissa motion detection task. These findings provide evidence that cortical GABAergic interneuron dysfunction plays a key role in sensory hyper-reactivity in a Shank3 mouse model of ASD and identify a potential cellular target for exploring therapeutic interventions
The Puzzle and the Nuclear Force
The nucleon-deuteron analyzing power in elastic nucleon-deuteron
scattering poses a longstanding puzzle. At energies below
approximately 30 MeV cannot be described by any realistic NN force. The
inclusion of existing three-nucleon forces does not improve the situation.
Because of recent questions about the NN phases, we examine whether
reasonable changes in the NN force can resolve the puzzle. In order to do this
we investigate the effect on the waves produced by changes in different
parts of the potential (viz., the central force, tensor force, etc.), as well
as on the 2-body observables and on . We find that it is not possible with
reasonable changes in the NN potential to increase the 3-body and at the
same time to keep the 2-body observables unchanged. We therefore conclude that
the puzzle is likely to be solved by new three-nucleon forces, such as
those of spin-orbit type, which have not yet been taken into account.Comment: 35 pages in REVTeX, 1 figure in postscript and 3 figures in PiCTe
Does The 3N-Force Have A Hard Core?
The meson-nucleon dynamics that generates the hard core of the RuhrPot
two-nucleon interaction is shown to vanish in the irreducible 3N force. This
result indicates a small 3N force dominated by conventional light
meson-exchange dynamics and holds for an arbitrary meson-theoretic Lagrangian.
The resulting RuhrPot 3N force is defined in the appendix. A completely
different result is expected when the Tamm-Dancoff/Bloch-Horowitz procedure is
used to define the NN and 3N potentials. In that approach, (e.g. full Bonn
potential) both the NN {\it and} 3N potentials contain non-vanishing
contributions from the coherent sum of meson-recoil dynamics and the
possibility of a large hard core requiring explicit calculation cannot be ruled
out.Comment: 16 pages REVTeX + 3 ps fig
Composite vertices that lead to soft form factors
The momentum-space cut-off parameter of hadronic vertex functions
is studied in this paper. We use a composite model where we can measure the
contributions of intermediate particle propagations to . We show that
in many cases a composite vertex function has a much smaller cut-off than its
constituent vertices, particularly when light constituents such as pions are
present in the intermediate state. This suggests that composite
meson-baryon-baryon vertex functions are rather soft, i.e., they have \Lambda
considerably less than 1 GeV. We discuss the origin of this softening of form
factors as well as the implications of our findings on the modeling of nuclear
reactions.Comment: REVTex, 19 pages, 5 figs(to be provided on request
Triton calculations with and exchange three-nucleon forces
The Faddeev equations are solved in momentum space for the trinucleon bound
state with the new Tucson-Melbourne and exchange three-nucleon
potentials. The three-nucleon potentials are combined with a variety of
realistic two-nucleon potentials. The dependence of the triton binding energy
on the cut-off parameter in the three-nucleon potentials is studied
and found to be reduced compared to the case with pure exchange. The
exchange parts of the three-nucleon potential yield an overall repulsive
effect. When the recommended parameters are employed, the calculated triton
binding energy turns out to be very close to its experimental value.
Expectation values of various components of the three-nucleon potential are
given to illustrate their significance for binding.Comment: 17 pages Revtex 3.0, 4 figures. Accepted for publication in Phys.
Rev.
Momentum and Coordinate Space Three-nucleon Potentials
In this paper we give explicit formulae in momentum and coordinate space for
the three-nucleon potentials due to and meson exchange, derived
from off-mass-shell meson-nucleon scattering amplitudes which are constrained
by the symmetries of QCD and by the experimental data. Those potentials have
already been applied to nuclear matter calculations. Here we display additional
terms which appear to be the most important for nuclear structure. The
potentials are decomposed in a way that separates the contributions of
different physical mechanisms involved in the meson-nucleon amplitudes. The
same type of decomposition is presented for the TM force: the
, the chiral symmetry breaking and the nucleon pair terms are isolated.Comment: LATEX, 33 pages, 3 figures (available as postscript files upon
request
Building the genomic nation: âHomo Brasilisâ and the âGenoma Mexicanoâ in comparative cultural perspective
This article explores the relationship between genetic research, nationalism and the construction of collective social identities in Latin America. It makes a comparative analysis of two research projects â the âGenoma Mexicanoâ and the âHomo Brasilisâ â both of which sought to establish national and genetic profiles. Both have reproduced and strengthened the idea of their respective nations of focus, incorporating biological elements into debates on social identities. Also, both have placed the unifying figure of the mestizo/mestiço at the heart of national identity constructions, and in so doing have displaced alternative identity categories, such as those based on race. However, having been developed in different national contexts, these projects have had distinct scientific and social trajectories: in Mexico, the genomic mestizo is mobilized mainly in relation to health, while in Brazil the key arena is that of race. We show the importance of the nation as a frame for mobilizing genetic data in public policy debates, and demonstrate how race comes in and out of focus in different Latin American national contexts of genomic research, while never completely disappearing
Role of Vector Mesons in High-Q^2 Lepton-Nucleon Scattering
The possible role played by vector mesons in inclusive deep inelastic
lepton-nucleon scattering is investigated. In the context of the convolution
model, we calculate self-consistently the scaling contribution to the nucleon
structure function using the formalism of time-ordered perturbation theory in
the infinite momentum frame. Our results indicate potentially significant
effects only when the vector meson---nucleon form factor is very hard.
Agreement with the experimental antiquark distributions, however, requires
relatively soft form factors for the , and vertices.Comment: 22 pages, 9 figures (available upon request); accepted for
publication in Phys.Rev.D, ADP-92-197/T12
- âŠ