42 research outputs found

    Decreased expression of the mannose 6- phosphate/insulin-like growth factor-II receptor promotes growth of human breast cancer cells

    Get PDF
    BACKGROUND: Loss or mutation of the mannose 6-phosphate/insulin-like growth factor-II receptor (M6P/IGF2R) has been found in breast cancer. However, whether or not decreased levels of functional M6P/IGF2R directly contribute to the process of carcinogenesis needs to be further verified by functional studies. METHODS: In this study, using viral and ribozyme strategies we reduced the expression of M6P/IGF2R in human breast cancer cells and then examined the effect on growth and apoptosis of these cells. RESULTS: Our results showed that infection of MCF-7 cells with the adenovirus carrying a ribozyme targeted against the M6P/IGF2R mRNA dramatically reduced the level of transcripts and the functional activity of M6P/IGF2R in these cells. Accordingly, cells treated with the ribozyme exhibited a higher growth rate and a lower apoptotic index than control cells (infected with a control vector). Furthermore, decreased expression of M6P/IGF2R enhanced IGF-II-induced proliferation and reduced cell susceptibility to TNF-induced apoptosis. CONCLUSIONS: These results suggest that M6P/IGF2R functions as a growth suppressor and its loss or mutation may contribute to development and progression of cancer. This study also demonstrates that adenoviral delivery of the ribozyme provides a useful tool for investigating the role of M6P/IGF2R in regulation of cell growth

    Simultaneous Recruitment of Drug Users and Men Who Have Sex with Men in the United States and Russia Using Respondent-Driven Sampling: Sampling Methods and Implications

    Get PDF
    The Sexual Acquisition and Transmission of HIV Cooperative Agreement Program (SATHCAP) examined the role of drug use in the sexual transmission of the human immunodeficiency virus (HIV) from traditional high-risk groups, such as men who have sex with men (MSM) and drug users (DU), to lower risk groups in three US cities and in St. Petersburg, Russia. SATHCAP employed respondent-driven sampling (RDS) and a dual high-risk group sampling approach that relied on peer recruitment for a combined, overlapping sample of MSM and DU. The goal of the sampling approach was to recruit an RDS sample of MSM, DU, and individuals who were both MSM and DU (MSM/DU), as well as a sample of sex partners of MSM, DU, and MSM/DU and sex partners of sex partners. The approach efficiently yielded a sample of 8,355 participants, including sex partners, across all four sites. At the US sites—Los Angeles, Chicago, and Raleigh–Durham—the sample consisted of older (mean age = 41 years), primarily black MSM and DU (both injecting and non-injecting); in St. Petersburg, the sample consisted of primarily younger (mean age = 28 years) MSM and DU (injecting). The US sites recruited a large proportion of men who have sex with men and with women, an important group with high potential for establishing a generalized HIV epidemic involving women. The advantage of using the dual high-risk group approach and RDS was, for the most part, the large, efficiently recruited samples of MSM, DU, and MSM/DU. The disadvantages were a recruitment bias by race/ethnicity and income status (at the US sites) and under-enrollment of MSM samples because of short recruitment chains (at the Russian site)

    Metabolic Versatility and Antibacterial Metabolite Biosynthesis Are Distinguishing Genomic Features of the Fire Blight Antagonist Pantoea vagans C9-1

    Get PDF
    Smits THM, Rezzonico F, Kamber T, et al. Metabolic Versatility and Antibacterial Metabolite Biosynthesis Are Distinguishing Genomic Features of the Fire Blight Antagonist Pantoea vagans C9-1. PLoS ONE. 2011;6(7): e22247.Background: Pantoea vagans is a commercialized biological control agent used against the pome fruit bacterial disease fire blight, caused by Erwinia amylovora. Compared to other biocontrol agents, relatively little is currently known regarding Pantoea genetics. Better understanding of antagonist mechanisms of action and ecological fitness is critical to improving efficacy. Principal Findings: Genome analysis indicated two major factors contribute to biocontrol activity: competition for limiting substrates and antibacterial metabolite production. Pathways for utilization of a broad diversity of sugars and acquisition of iron were identified. Metabolism of sorbitol by P. vagans C9-1 may be a major metabolic feature in biocontrol of fire blight. Biosynthetic genes for the antibacterial peptide pantocin A were found on a chromosomal 28-kb genomic island, and for dapdiamide E on the plasmid pPag2. There was no evidence of potential virulence factors that could enable an animal or phytopathogenic lifestyle and no indication of any genetic-based biosafety risk in the antagonist. Conclusions: Identifying key determinants contributing to disease suppression allows the development of procedures to follow their expression in planta and the genome sequence contributes to rationale risk assessment regarding the use of the biocontrol strain in agricultural systems

    Insights into the functions of the death associated protein kinases from C. elegans and other invertebrates

    No full text
    The death associated protein kinases (DAPK) are a phylogenetically widespread family of calcium-regulated serine/threonine kinases, initially identified from their roles in apoptosis. Subsequent studies, principally in vertebrate cells or models, have elucidated the functions of the DAPK family in autophagy and tumor suppression. Invertebrate genetic model organisms such as Drosophila and C. elegans have revealed additional functions for DAPK and related kinases. In the nematode C. elegans, the sole DAPK family member DAPK-1 positively regulates starvation-induced autophagy. Genetic analysis in C. elegans has revealed that DAPK-1 also acts as a negative regulator of epithelial innate immune responses in the epidermis. This negative regulatory role for DAPK in innate immunity may be analogous to the roles of mammalian DAPK in inflammatory responses
    corecore