7 research outputs found

    An Automated Mobile Game-based Screening Tool for Patients with Alcohol Dependence

    Get PDF
    Traditional methods for screening and diagnosis of alcohol dependence are typically administered by trained clinicians in medical settings and often rely on interview responses. These self-reports can be unintentionally or deliberately false, and misleading answers can, in turn, lead to inaccurate assessment and diagnosis. In this study, we examine the use of user-game interaction patterns on mobile games to develop an automated diagnostic and screening tool for alcohol-dependent patients. Our approach relies on the capture of interaction patterns during gameplay, while potential patients engage with popular mobile games on smartphones. The captured signals include gameplay performance, touch gestures, and device motion, with the intention of identifying patients with alcohol dependence. We evaluate the classification performance of various supervised learning algorithms on data collected from 40 patients and 40 age-matched healthy adults. The results show that patients with alcohol dependence can be automatically identified accurately using the ensemble of touch, device motion, and gameplay performance features on 3-minute samples (accuracy=0.95, sensitivity=0.95, and specificity=0.95). The present findings provide strong evidence suggesting the potential use of user-game interaction metrics on existing mobile games as discriminant features for developing an implicit measure to identify alcohol dependence conditions. In addition to supporting healthcare professionals in clinical decision-making, the game-based self-screening method could be used as a novel strategy to promote alcohol dependence screening, especially outside of clinical settings

    Plasma GFAP associates with secondary Alzheimer's pathology in Lewy body disease

    No full text
    Abstract Objective Within Lewy body spectrum disorders (LBSD) with α‐synuclein pathology (αSyn), concomitant Alzheimer's disease (AD) pathology is common and is predictive of clinical outcomes, including cognitive impairment and decline. Plasma phosphorylated tau 181 (p‐tau181) is sensitive to AD neuropathologic change (ADNC) in clinical AD, and plasma glial fibrillary acidic protein (GFAP) is associated with the presence of β‐amyloid plaques. While these plasma biomarkers are well tested in clinical and pathological AD, their diagnostic and prognostic performance for concomitant AD in LBSD is unknown. Methods In autopsy‐confirmed αSyn‐positive LBSD, we tested how plasma p‐tau181 and GFAP differed across αSyn with concomitant ADNC (αSyn+AD; n = 19) and αSyn without AD (αSyn; n = 30). Severity of burden was scored on a semiquantitative scale for several pathologies (e.g., β‐amyloid and tau), and scores were averaged across sampled brainstem, limbic, and neocortical regions. Results Linear models showed that plasma GFAP was significantly higher in αSyn+AD compared to αSyn (β = 0.31, 95% CI = 0.065–0.56, and P = 0.015), after covarying for age at plasma, plasma‐to‐death interval, and sex; plasma p‐tau181 was not (P = 0.37). Next, linear models tested associations of AD pathological features with both plasma analytes, covarying for plasma‐to‐death, age at plasma, and sex. GFAP was significantly associated with brain β‐amyloid (β = 15, 95% CI = 6.1–25, and P = 0.0018) and tau burden (β = 12, 95% CI = 2.5–22, and P = 0.015); plasma p‐tau181 was not associated with either (both P > 0.34). Interpretation Findings indicate that plasma GFAP may be sensitive to concomitant AD pathology in LBSD, especially accumulation of β‐amyloid plaques

    Diffusion tensor MRI to distinguish progressive supranuclear palsy from α-synucleinopathies

    No full text
    Background: The differential diagnosis of progressive supranuclear palsy (PSP) and Lewy body disorders, which include Parkinson disease and dementia with Lewy bodies, is often challenging due to the overlapping symptoms. Purpose To develop a diagnostic tool based on diffusion tensor imaging (DTI) to distinguish between PSP and Lewy body disorders at the individual-subject level. Materials and Methods: In this retrospective study, skeletonized DTI metrics were extracted from two independent data sets: the discovery cohort from the Swedish BioFINDER study and the validation cohort from the Penn Frontotemporal Degeneration Center (data collected between 2010 and 2018). Based on previous neuroimaging studies and neuropathologic evidence, a combination of regions hypothesized to be sensitive to pathologic features of PSP were identified (ie, the superior cerebellar peduncle and frontal white matter) and fractional anisotropy (FA) was used to compute an FA score for each individual. Classification performances were assessed by using logistic regression and receiver operating characteristic analysis. Results: In the discovery cohort, 16 patients with PSP (mean age ± standard deviation, 73 years ± 5; eight women, eight men), 34 patients with Lewy body disorders (mean age, 71 years ± 6; 14 women, 20 men), and 44 healthy control participants (mean age, 66 years ± 8; 26 women, 18 men) were evaluated. The FA score distinguished between clinical PSP and Lewy body disorders with an area under the curve of 0.97 ± 0.04, a specificity of 91% (31 of 34), and a sensitivity of 94% (15 of 16). In the validation cohort 34 patients with PSP (69 years ± 7; 22 women, 12 men), 25 patients with Lewy body disorders (70 years ± 7; nine women, 16 men), and 32 healthy control participants (64 years ± 7; 22 women, 10 men) were evaluated. The accuracy of the FA score was confirmed (area under the curve, 0.96 ± 0.04; specificity, 96% [24 of 25]; and sensitivity, 85% [29 of 34]). Conclusion: These cross-validated findings lay the foundation for a clinical test to distinguish progressive supranuclear palsy from Lewy body disorders. © RSNA, 2019 See also the editorial by Shah in this issue

    Effect of Urate-Elevating Inosine on Early Parkinson Disease Progression: The SURE-PD3 Randomized Clinical Trial

    No full text
    Importance: Urate elevation, despite associations with crystallopathic, cardiovascular, and metabolic disorders, has been pursued as a potential disease-modifying strategy for Parkinson disease (PD) based on convergent biological, epidemiological, and clinical data. Objective: To determine whether sustained urate-elevating treatment with the urate precursor inosine slows early PD progression. Design, Participants, and Setting: Randomized, double-blind, placebo-controlled, phase 3 trial of oral inosine treatment in early PD. A total of 587 individuals consented, and 298 with PD not yet requiring dopaminergic medication, striatal dopamine transporter deficiency, and serum urate below the population median concentration (\u3c5.8 mg/dL) were randomized between August 2016 and December 2017 at 58 US sites, and were followed up through June 2019. Interventions: Inosine, dosed by blinded titration to increase serum urate concentrations to 7.1-8.0 mg/dL (n = 149) or matching placebo (n = 149) for up to 2 years. Main Outcomes and Measures: The primary outcome was rate of change in the Movement Disorder Society Unified Parkinson Disease Rating Scale (MDS-UPDRS; parts I-III) total score (range, 0-236; higher scores indicate greater disability; minimum clinically important difference of 6.3 points) prior to dopaminergic drug therapy initiation. Secondary outcomes included serum urate to measure target engagement, adverse events to measure safety, and 29 efficacy measures of disability, quality of life, cognition, mood, autonomic function, and striatal dopamine transporter binding as a biomarker of neuronal integrity. Results: Based on a prespecified interim futility analysis, the study closed early, with 273 (92%) of the randomized participants (49% women; mean age, 63 years) completing the study. Clinical progression rates were not significantly different between participants randomized to inosine (MDS-UPDRS score, 11.1 [95% CI, 9.7-12.6] points per year) and placebo (MDS-UPDRS score, 9.9 [95% CI, 8.4-11.3] points per year; difference, 1.26 [95% CI, -0.59 to 3.11] points per year; P = .18). Sustained elevation of serum urate by 2.03 mg/dL (from a baseline level of 4.6 mg/dL; 44% increase) occurred in the inosine group vs a 0.01-mg/dL change in serum urate in the placebo group (difference, 2.02 mg/dL [95% CI, 1.85-2.19 mg/dL]; P\u3c.001). There were no significant differences for secondary efficacy outcomes including dopamine transporter binding loss. Participants randomized to inosine, compared with placebo, experienced fewer serious adverse events (7.4 vs 13.1 per 100 patient-years) but more kidney stones (7.0 vs 1.4 stones per 100 patient-years). Conclusions and Relevance: Among patients recently diagnosed as having PD, treatment with inosine, compared with placebo, did not result in a significant difference in the rate of clinical disease progression. The findings do not support the use of inosine as a treatment for early PD
    corecore