20 research outputs found

    LHUFT Bibliography January 2019

    Get PDF

    LHUFT Bibliography Supplement January 2019

    Get PDF

    Spotlight on Scholarly Commons, June 2017 - Worldwide

    Get PDF
    Faculty with notable downloads: Aman Gupta Kelly Whealan-George James Marion, Jr. Tracey Richardson Matthew Earnhardt Brent Terwilliger Dennis Vincenzi David Ison Kenneth Witcher David Thirtyacre Adeel Khalid Worldwide Faculty Submission Statistics: Total Papers: 49 All-time Downloads: 12,715 June Downloads: 368 *Statistics are for the Worldwide Campus publication

    Spotlight on Scholarly Commons, June 2017 - Prescott

    Get PDF
    Faculty with notable downloads: Timothy Holt Mohammad Moallemi Linda Wieland Matt Earnhardt Sonya McMullen Prescott Faculty Submission Statistics: Total Papers: 148 All-time Downloads: 84,574 June Downloads: 1,189 Other Interesting Information: Issues of the Pioneer, ERAU Prescott\u27s official newspaper 1978-1983 have been digitized and published. Several SelectedWorks sites have been created. *Statistics are for the Prescott Campus publication

    Spotlight on Scholarly Commons, June 2017 - Daytona Beach

    Get PDF
    Faculty with notable downloads: Anke Arnaud Gary Kessler Guy Smith William Barott William Lahneman Daytona Beach Faculty Submission Statistics: Total Papers: 553 All-time Downloads: 61,693 June Downloads: 1,738 Other Interesting Information: The LHUFT Center and ICAEA were brought online. *Statistics are for the Daytona Beach Campus publication

    Scholarly Commons Annual Report 2017-2018

    Get PDF
    Scholarly Commons continues to showcase ERAU research globally. While the number of submissions increased by 11.85% over FY 17, downloads grew by 43.89% in FY 18. In addition, new conferences, such as the 2018 International Civil Aviation English Association (ICAEA) and ERAU’s AviAsian Conference, were added. The annual ICAEA Conference is held in a different international location each year and the Daytona Beach Campus served as the host this year. The AviAsian Conference is sponsored on ERAU’s Singapore Campus by faculty from that area

    Hot oxygen escape from Mars: Simple scaling with solar EUV irradiance

    Full text link
    The evolution of the atmosphere of Mars and the loss of volatiles over the lifetime of the solar system is a key topic in planetary science. An important loss process for atomic species, such as oxygen, is ionospheric photochemical escape. Dissociative recombination of O2+ ions (the major ion species) produces fast oxygen atoms, some of which can escape from the planet. Many theoretical hot O models have been constructed over the years, although a number of uncertainties are present in these models, particularly concerning the elastic cross sections of O atoms with CO2. Recently, the Mars Atmosphere and Volatile Evolution mission has been rapidly improving our understanding of the upper atmosphere and ionosphere of Mars and its interaction with the external environment (e.g., solar wind), allowing a new assessment of this important loss process. The purpose of the current paper is to take a simple analytical approach to the oxygen escape problem in order to (1) study the role that variations in solar radiation or solar wind fluxes could have on escape in a transparent fashion and (2) isolate the effects of uncertainties in oxygen cross sections on the derived oxygen escape rates. In agreement with several more elaborate numerical models, we find that the escape flux is directly proportional to the incident solar extreme ultraviolet irradiance and is inversely proportional to the backscatter elastic cross section. The amount of O lost due to ion transport in the topside ionosphere is found to be about 5–10% of the total.Key PointsPhotochemistry dominates oxygen escape from MarsMartian oxygen escape rate scales linearly with solar activityDependence of O escape rate from Mars on elastic cross section is describedPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136315/1/jgra53155.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136315/2/jgra53155_am.pd

    Hot oxygen escape from Mars: Simple scaling with solar EUV irradiance

    Get PDF
    The evolution of the atmosphere of Mars and the loss of volatiles over the lifetime of the solar system is a key topic in planetary science. An important loss process for atomic species, such as oxygen, is ionospheric photochemical escape. Dissociative recombination of O2+ ions (the major ion species) produces fast oxygen atoms, some of which can escape from the planet. Many theoretical hot O models have been constructed over the years, although a number of uncertainties are present in these models, particularly concerning the elastic cross sections of O atoms with CO2. Recently, the Mars Atmosphere and Volatile Evolution mission has been rapidly improving our understanding of the upper atmosphere and ionosphere of Mars and its interaction with the external environment (e.g., solar wind), allowing a new assessment of this important loss process. The purpose of the current paper is to take a simple analytical approach to the oxygen escape problem in order to (1) study the role that variations in solar radiation or solar wind fluxes could have on escape in a transparent fashion and (2) isolate the effects of uncertainties in oxygen cross sections on the derived oxygen escape rates. In agreement with several more elaborate numerical models, we find that the escape flux is directly proportional to the incident solar extreme ultraviolet irradiance and is inversely proportional to the backscatter elastic cross section. The amount of O lost due to ion transport in the topside ionosphere is found to be about 5–10% of the total

    Transdermal oestradiol for androgen suppression in prostate cancer: long-term cardiovascular outcomes from the randomised Prostate Adenocarcinoma Transcutaneous Hormone (PATCH) trial programme

    Get PDF
    Background Androgen suppression is a central component of prostate cancer management but causes substantial long-term toxicity. Transdermal administration of oestradiol (tE2) circumvents first-pass hepatic metabolism and, therefore, should avoid the cardiovascular toxicity seen with oral oestrogen and the oestrogen-depletion effects seen with luteinising hormone releasing hormone agonists (LHRHa). We present long-term cardiovascular follow-up data from the Prostate Adenocarcinoma Transcutaneous Hormone (PATCH) trial programme. Methods PATCH is a seamless phase 2/3, randomised, multicentre trial programme at 52 study sites in the UK. Men with locally advanced or metastatic prostate cancer were randomly allocated (1:2 from August, 2007 then 1:1 from February, 2011) to either LHRHa according to local practice or tE2 patches (four 100 μg patches per 24 h, changed twice weekly, reducing to three patches twice weekly if castrate at 4 weeks [defined as testosterone ≤1·7 nmol/L]). Randomisation was done using a computer-based minimisation algorithm and was stratified by several factors, including disease stage, age, smoking status, and family history of cardiac disease. The primary outcome of this analysis was cardiovascular morbidity and mortality. Cardiovascular events, including heart failure, acute coronary syndrome, thromboembolic stroke, and other thromboembolic events, were confirmed using predefined criteria and source data. Sudden or unexpected deaths were attributed to a cardiovascular category if a confirmatory post-mortem report was available and as other relevant events if no post-mortem report was available. PATCH is registered with the ISRCTN registry, ISRCTN70406718; the study is ongoing and adaptive. Findings Between Aug 14, 2007, and July 30, 2019, 1694 men were randomly allocated either LHRHa (n=790) or tE2 patches (n=904). Overall, median follow-up was 3·9 (IQR 2·4–7·0) years. Respective castration rates at 1 month and 3 months were 65% and 93% among patients assigned LHRHa and 83% and 93% among those allocated tE2. 157 events from 145 men met predefined cardiovascular criteria, with a further ten sudden deaths with no post-mortem report (total 167 events in 153 men). 26 (2%) of 1694 patients had fatal cardiovascular events, 15 (2%) of 790 assigned LHRHa and 11 (1%) of 904 allocated tE2. The time to first cardiovascular event did not differ between treatments (hazard ratio 1·11, 95% CI 0·80–1·53; p=0·54 [including sudden deaths without post-mortem report]; 1·20, 0·86–1·68; p=0·29 [confirmed group only]). 30 (34%) of 89 cardiovascular events in patients assigned tE2 occurred more than 3 months after tE2 was stopped or changed to LHRHa. The most frequent adverse events were gynaecomastia (all grades), with 279 (38%) events in 730 patients who received LHRHa versus 690 (86%) in 807 patients who received tE2 (p<0·0001) and hot flushes (all grades) in 628 (86%) of those who received LHRHa versus 280 (35%) who received tE2 (p<0·0001). Interpretation Long-term data comparing tE2 patches with LHRHa show no evidence of a difference between treatments in cardiovascular mortality or morbidity. Oestrogens administered transdermally should be reconsidered for androgen suppression in the management of prostate cancer. Funding Cancer Research UK, and Medical Research Council Clinical Trials Unit at University College London

    Detection of the Nitric Oxide Dayglow on Mars by MAVEN/IUVS

    No full text
    We report the first remote observation of nitric oxide (NO) densities on Mars. The Imaging Ultraviolet Spectrograph (IUVS) on NASA\u27s Mars Atmosphere and Volatile Evolution (MAVEN) satellite observes NO γ band solar resonance fluorescence between 213.0 and 225.5 nm. We invert an average dayglow limb radiance profile to retrieve a number density profile between 80 and 130 km. The retrieved IUVS NO number density at 117 km is 5 times smaller than those measured by Viking mass spectrometers over 40 years ago but consistent with photochemical model results within the IUVS statistical uncertainty. These observations may therefore help to reconcile a longstanding problem in our understanding of NO photochemistry in the Martian upper atmosphere. We also report the first detection of the CO+ First Negative bands in the Martian dayglow near 219 nm
    corecore