24 research outputs found

    Strategies for the hyperpolarization of acetonitrile and related Ligands by SABRE

    Get PDF
    (Chemical Equation Presented) We report on a strategy for using SABRE (signal amplification by reversible exchange) for polarizing 1H and 13C nuclei of weakly interacting ligands which possess biologically relevant and nonaromatic motifs. We first demonstrate this via the polarization of acetonitrile, using Ir(IMes)(COD)Cl as the catalyst precursor, and confirm that the route to hyperpolarization transfer is via the J-coupling network. We extend this work to the polarization of propionitrile, benzylnitrile, benzonitrile, and trans-3-hexenedinitrile in order to assess its generality. In the 1H NMR spectrum, the signal for acetonitrile is enhanced 8-fold over its thermal counterpart when [Ir(H)2(IMes)(MeCN)3]+ is the catalyst. Upon addition of pyridine or pyridine-d5, the active catalyst changes to [Ir(H)2(IMes)- (py)2(MeCN)]+ and the resulting acetonitrile 1H signal enhancement increases to 20- and 60-fold, respectively. In 13C NMR studies, polarization transfers optimally to the quaternary 13C nucleus of MeCN while the methyl 13C is hardly polarized. Transfer to 13C is shown to occur first via the 1H - 1H coupling between the hydrides and the methyl protons and then via either the 2J or 1J couplings to the respective 13Cs, of which the 2J route is more efficient. These experimental results are rationalized through a theoretical treatment which shows excellent agreement with experiment. In the case of MeCN, longitudinal two-spin orders between pairs of 1H nuclei in the three-spin methyl group are created. Two-spin order states, between the 1H and 13C nuclei, are also created, and their existence is confirmed for Me13CN in both the 1H and 13C NMR spectra using the Only Parahydrogen Spectroscopy protocol

    Design of the 0.5 - 1 GHz Planar Recycler Pickup and Kicker Antennas

    No full text
    The stochastic cooling system in the Recycler ring at Fermilab required the addition of a 0.5-1 GHz cooling system. This requirement dictated the design of a new antenna for this band of the system. The design problem is defined, method of design is illustrated, and the measurement data are reported. The Recycler is a storage ring comprised of mostly permanent magnets located in the tunnel of the Main Injector at Fermilab. The goal for the construction of the Recycler is to collect and store unused antiprotons from collisions in the Tevatron for use in future collisions in the Tevatron. It will both stochastically and electron cool these unused antiprotons before another collision experiment is possible in the Tevatron. By reusing the antiprotons the luminosity of the experiment can be increased faster. The Recycler will use three bands for its stochastic cooling system. It will reuse the existing designs from the Antiproton Source for the 1-2 GHz and 2-4 GHz systems, and it requires a new design for an additional lower frequency band for the 0.5-1 GHz system. Since the existing designs were fabricated using a microstrip topology it was desired that the new design use a similar topology so that the vacuum tank designs and supporting hardware be identical for all three bands. A primary difference between the design of the pickups/kickers of the Antiproton Source and the Recycler is a different aperture in the machine itself. The Recycler has a bigger aperture and consequently reusing the designs for the existing Antiproton Source pickups/kickers is not electrically optimal but is cost efficient. Measurements will be shown later in this paper for the design of the 0.5-1 GHz system showing the effect of the aperture on the antenna performance. A mockup of the Recycler tank was manufactured for designing and testing the 0.5-1 GHz pickups/kickers. The design procedure was an iterative process and required both a constant dialogue and also a strong relationship with a board house for the manufacture of each iterative step. It also required extensive use of time domain reflectometers (TDRs) and vector network analyzers (NWAs). The TDR was used for impedance matching and for a rough measurement of the center frequency of the antenna. The testing process also used the theory of stretched wire measurements (SWM) for finding the exact center frequency of the pickups/kickers as well as the beam coupling to the antenna

    Design of Microwave Band Pass Filters for the Debuncher Stochastic Cooling System

    No full text
    The FIR filters designed for the debuncher stochastic cooling system needed improvement. Its bandwidth was too wide, its magnitude was not flat, its phase ripple was too great, and it was difficult to control the characteristics of the filter. A simple microwave technique was employed to have a short time delay, simple robust layout, and small board size. A significant savings was seen over the FIR technique and these filters were installed in the Antiproton Source Debuncher while the FIR filters were removed from the debuncher stochastic cooling entirely

    Synthesis of Band Filters and Equalizers Using Microwav FIR Techniques

    No full text
    It is desired to design a passive bandpass filter with both a linear phase and flat magnitude response within the band and also has steep skirts. Using the properties of both coupled lines and elementary FIR (Finite Impulse Response) signal processing techniques can produce a filter of adequate phase response and magnitude control. The design procedure will first be described and then a sample filter will then be synthesized and results shown

    Design of the Core 2-4 GHz Betatron Equalizer

    No full text
    The core betatron equalizer in the Accumulator in the Antiproton Source at Fermilab needed to be upgraded. The performance could be rated as only circa 650 MHz when the system was a 2 GHz system. The old equalizer did not correct for the strong phase mismatch for the relatively strong gain of the system slightly below 2 GHz. The design corrects this phase mismatch and is relatively well matched both in and out of band
    corecore