8 research outputs found
Design and Synthesis of a Pan-Janus Kinase Inhibitor Clinical Candidate (PF-06263276) Suitable for Inhaled and Topical Delivery for the Treatment of Inflammatory Diseases of the Lungs and Skin
By use of a structure-based computational method for identification of structurally novel Janus kinase (JAK) inhibitors predicted to bind beyond the ATP binding site, a potent series of indazoles was identified as selective pan-JAK inhibitors with a type 1.5 binding mode. Optimization of the series for potency and increased duration of action commensurate with inhaled or topical delivery resulted in potent pan-JAK inhibitor 2 (PF-06263276), which was advanced into clinical studies
Discovery of Aryl Sulfonamides as Isoform-Selective Inhibitors of Na<sub>V</sub>1.7 with Efficacy in Rodent Pain Models
We report on a novel series of aryl
sulfonamides that act as nanomolar
potent, isoform-selective inhibitors of the human sodium channel hNa<sub>V</sub>1.7. The optimization of these inhibitors is described. We
aimed to improve potency against hNa<sub>V</sub>1.7 while minimizing
off-target safety concerns and generated compound <b>3</b>.
This agent displayed significant analgesic effects in rodent models
of acute and inflammatory pain and demonstrated that binding to the
voltage sensor domain 4 site of Na<sub>V</sub>1.7 leads to an analgesic
effect <i>in vivo</i>. Our findings corroborate the importance
of hNa<sub>V</sub>1.7 as a drug target for the treatment of pain
Design of Conformationally Constrained Acyl Sulfonamide Isosteres: Identification of <i>N</i>‑([1,2,4]Triazolo[4,3‑<i>a</i>]pyridin-3-yl)methane-sulfonamides as Potent and Selective <i>h</i>Na<sub>V</sub>1.7 Inhibitors for the Treatment of Pain
The
sodium channel Na<sub>V</sub>1.7 has emerged as a promising
target for the treatment of pain based on strong genetic validation
of its role in nociception. In recent years, a number of aryl and
acyl sulfonamides have been reported as potent inhibitors of Na<sub>V</sub>1.7, with high selectivity over the cardiac isoform Na<sub>V</sub>1.5. Herein, we report on the discovery of a novel series
of <i>N</i>-([1,2,4]triazolo[4,3-<i>a</i>]pyridin-3-yl)methanesulfonamides
as selective Na<sub>V</sub>1.7 inhibitors. Starting with the crystal
structure of an acyl sulfonamide, we rationalized that cyclization
to form a fused heterocycle would improve physicochemical properties,
in particular lipophilicity. Our design strategy focused on optimization
of potency for block of Na<sub>V</sub>1.7 and human metabolic stability.
Lead compounds <b>10</b>, <b>13</b> (GNE-131), and <b>25</b> showed excellent potency, good <i>in vitro</i> metabolic stability, and low <i>in vivo</i> clearance
in mouse, rat, and dog. Compound <b>13</b> also displayed excellent
efficacy in a transgenic mouse model of induced pain
Design of Conformationally Constrained Acyl Sulfonamide Isosteres: Identification of <i>N</i>‑([1,2,4]Triazolo[4,3‑<i>a</i>]pyridin-3-yl)methane-sulfonamides as Potent and Selective <i>h</i>Na<sub>V</sub>1.7 Inhibitors for the Treatment of Pain
The
sodium channel Na<sub>V</sub>1.7 has emerged as a promising
target for the treatment of pain based on strong genetic validation
of its role in nociception. In recent years, a number of aryl and
acyl sulfonamides have been reported as potent inhibitors of Na<sub>V</sub>1.7, with high selectivity over the cardiac isoform Na<sub>V</sub>1.5. Herein, we report on the discovery of a novel series
of <i>N</i>-([1,2,4]triazolo[4,3-<i>a</i>]pyridin-3-yl)methanesulfonamides
as selective Na<sub>V</sub>1.7 inhibitors. Starting with the crystal
structure of an acyl sulfonamide, we rationalized that cyclization
to form a fused heterocycle would improve physicochemical properties,
in particular lipophilicity. Our design strategy focused on optimization
of potency for block of Na<sub>V</sub>1.7 and human metabolic stability.
Lead compounds <b>10</b>, <b>13</b> (GNE-131), and <b>25</b> showed excellent potency, good <i>in vitro</i> metabolic stability, and low <i>in vivo</i> clearance
in mouse, rat, and dog. Compound <b>13</b> also displayed excellent
efficacy in a transgenic mouse model of induced pain
Design of Conformationally Constrained Acyl Sulfonamide Isosteres: Identification of <i>N</i>‑([1,2,4]Triazolo[4,3‑<i>a</i>]pyridin-3-yl)methane-sulfonamides as Potent and Selective <i>h</i>Na<sub>V</sub>1.7 Inhibitors for the Treatment of Pain
The
sodium channel Na<sub>V</sub>1.7 has emerged as a promising
target for the treatment of pain based on strong genetic validation
of its role in nociception. In recent years, a number of aryl and
acyl sulfonamides have been reported as potent inhibitors of Na<sub>V</sub>1.7, with high selectivity over the cardiac isoform Na<sub>V</sub>1.5. Herein, we report on the discovery of a novel series
of <i>N</i>-([1,2,4]triazolo[4,3-<i>a</i>]pyridin-3-yl)methanesulfonamides
as selective Na<sub>V</sub>1.7 inhibitors. Starting with the crystal
structure of an acyl sulfonamide, we rationalized that cyclization
to form a fused heterocycle would improve physicochemical properties,
in particular lipophilicity. Our design strategy focused on optimization
of potency for block of Na<sub>V</sub>1.7 and human metabolic stability.
Lead compounds <b>10</b>, <b>13</b> (GNE-131), and <b>25</b> showed excellent potency, good <i>in vitro</i> metabolic stability, and low <i>in vivo</i> clearance
in mouse, rat, and dog. Compound <b>13</b> also displayed excellent
efficacy in a transgenic mouse model of induced pain