135 research outputs found

    Microstructural evolution during hot deformation of duplex stainless steel

    Full text link
    The microstructure evolution during hot deformation of a 23Cr-5Ni-3Mo duplex stainless steel was investigated in torsion. The presence of a soft &delta; ferrite phase in the vicinity of austenite caused strain partitioning, with accommodation of more strain in the &delta; ferrite. Furthermore, owing to the limited number of austenite/austenite grain boundaries, the kinetics of dynamic recrystallisation (DRX) in austenite was very slow. The first DRX grains in the austenite phase formed at a strain beyond the peak and proceeded to &lt;15% of the microstructure at the rupture strain of the sample. On the other hand, the microstructure evolution in &delta; ferrite started by formation of low angle grain boundaries at low strains and the density of these boundaries increased with increasing strain. There was clear evidence of continuous dynamic recrystallisation in this phase at strains beyond the peak. However, in the &delta; ferrite phase at high strains, most grains consisted of &delta;/&delta; and &delta;/&gamma; boundaries.<br /

    Simulation of dynamic recrystallization using irregular cellular automata

    Get PDF
    Computer simulation is a powerful tool to predict microstructure and its evolution during dynamic recrystallization. Cellular Automata (CA), as one of the most efficient methods proposed to simulate recrystallization and grain growth. In this work, recrystallization and grain growth phenomena were modelled by using a two dimensional irregular CA method. Initial grain size, nuclei density and orientation of each grain were variables which have been used as entering data to the CA model. Final grain size, orientation of each grain, dislocation density and stress-strain curve were the results which have been resulted to validate the current model. Considering the model assumptions, it is shown that the CA can successfully simulate dynamic recrystallization

    Effect of microstructural morphology on the mechanical properties of titanium alloys

    Get PDF
    Different morphologies of α+β microstructures were obtained in a commercial Ti-6Al-4V alloy by cooling at different rates from the single β-phase region into the two phase region. The effect of such morphologies on mechanical properties was studied using hot compression tests in a Gleeble thermomechanical simulator. A variety of complex morphologies could be obtained since the cooling rate has a significant influence on the β to α phase transformation and the resulting morphological development. While most of the β phase transformed to colonies of α at high cooling rates, it was possible to obtain a complex mixture of a colonies, grain boundary a and lamellar structure by decreasing the cooling rate. These complex morphologies each exhibited distinctive mechanical properties and characteristic dynamic phase transformation behaviour during deformation as a function of strain rate

    Porous Titanium Scaffolds Fabricated by Metal Injection Moulding for Biomedical Applications

    Get PDF
    Biocompatible titanium scaffolds with up to 40% interconnected porosity were manufactured through the metal injection moulding process and the space holder technique. The mechanical properties of the manufactured scaffold showed a high level of compatibility with those of the cortical human bone. Sintering at 1250 °C produced scaffolds with 36% porosity and more than 90% interconnected pores, a compressive yield stress of 220 MPa and a Young's modulus of 7.80 GPa, all suitable for bone tissue engineering. Increasing the sintering temperature to 1300 °C increased the Young's modulus to 22.0 GPa due to reduced porosity, while reducing the sintering temperature to 1150 °C lowered the yield stress to 120 MPa, indicative of insufficient sintering. Electrochemical studies revealed that samples sintered at 1150 °C have a higher corrosion rate compared with those at a sintering temperature of 1250 °C. Overall, it was concluded that sintering at 1250 °C yielded the most desirable results

    Oropharyngeal candidiasis in hospitalised COVID-19 patients from Iran: Species identification and antifungal susceptibility pattern

    Get PDF
    Background: Emergence of coronavirus disease 2019 (COVID-19) is a major healthcare threat. Apparently, the novel coronavirus (SARS-CoV-2) is armed by special abilities to spread and dysregulate the immune mechanisms. The likelihood of oropharyngeal candidiasis (OPC) development in COVID-19 patients with a list of attributable risk factors for oral infections has not yet been investigated. Objectives: We here aim to investigate the prevalence, causative agents and antifungal susceptibility pattern of OPC in Iranian COVID-19 patients. Patients and Methods: A total of 53 hospitalised COVID-19 patients with OPC were studied. Relevant clinical data were mined. Strain identification was performed by 21-plex PCR and sequencing of the internal transcribed spacer region (ITS1-5.8S-ITS2). Antifungal susceptibility testing to fluconazole, itraconazole, voriconazole, amphotericin B, caspofungin, micafungin and anidulafungin was performed according to the CLSI broth dilution method. Results: In 53 COVID-19 patients with OPC, cardiovascular diseases (52.83) and diabetes (37.7) were the principal underlying conditions. The most common risk factor was lymphopaenia (71). In total, 65 Candida isolates causing OPC were recovered. C albicans (70.7) was the most common, followed by C glabrata (10.7), C dubliniensis (9.2), C parapsilosis sensu stricto (4.6), C tropicalis (3) and Pichia kudriavzevii (=C krusei, 1.5). Majority of the Candida isolates were susceptible to all three classes of antifungal drugs. Conclusion: Our data clarified some concerns regarding the occurrence of OPC in Iranian COVID-19 patients. Further studies should be conducted to design an appropriate prophylaxis programme and improve management of OPC in critically ill COVID-19 patients. © 2020 Blackwell Verlag Gmb

    The effect of multiple deformations on the formation of ultrafine grained steels

    Full text link
    A C-Mn-Nb-Ti steel was deformed by hot torsion to study ultrafine ferrite formation through dynamic strain-induced transformation (DSIT) in conjunction with air cooling. A systematic study was carried out first to evaluate the effect of deformation temperature and prior austenite grain size on the critical strain for ultrafine ferrite formation (&epsilon; C,UFF) through single-pass deformation. Then, multiple deformations in the nonrecrystallization region were used to study the effect of thermomechanical parameters (i.e., strain, deformation temperature, etc.) on &epsilon; C,UFF. The multiple deformations in the nonrecrystallization region significantly reduced &epsilon; C,UFF, although the total equivalent strain for a given thermomechanical condition was higher than that required in single-pass deformation. The current study on a Ni-30Fe austenitic model alloy revealed that laminar microband structures were the key intragranular defects in the austenite for nucleation of ferrite during the hot torsion test. The microbands were refined and overall misorientation angle distribution increased with a decrease in the deformation temperature for a given thermomechanical processing condition. For nonisothermal multipass deformation, there was some contribution to the formation of high-angle microband boundaries from strains at higher temperature, although the strains were not completely additive.<br /

    Safety and effectiveness of high-dose vitamin C in patients with COVID-19: a randomized open-label clinical trial

    Get PDF
    Background: Vitamin C is an essential water-soluble nutrient that functions as a key antioxidant and has been proven to be effective for boosting immunity. In this study, we aimed to assess the efficacy of adding high-dose intravenous vitamin C (HDIVC) to the regimens for patients with severe COVID-19 disease. Methods: An open-label, randomized, and controlled trial was conducted on patients with severe COVID-19 infection. The case and control treatment groups each consisted of 30 patients. The control group received lopinavir/ritonavir and hydroxychloroquine and the case group received HDIVC (6 g daily) added to the same regimen. Results: There were no statistically significant differences between two groups with respect to age and gender, laboratory results, and underlying diseases. The mean body temperature was significantly lower in the case group on the 3rd day of hospitalization (p = 0.001). Peripheral capillary oxygen saturations (SpO2) measured at the 3rd day of hospitalization was also higher in the case group receiving HDIVC (p = 0.014). The median length of hospitalization in the case group was significantly longer than the control group (8.5 days vs. 6.5 days) (p = 0.028). There was no significant difference in SpO2 levels at discharge time, the length of intensive care unit (ICU) stay, and mortality between the two groups. Conclusions: We did not find significantly better outcomes in the group who were treated with HDIVC in addition to the main treatment regimen at discharge. Trial registration irct.ir (IRCT20200411047025N1), April 14, 2020 © 2021, The Author(s)

    The mechanical strength of additive manufactured intraosseous transcutaneous amputation prosthesis, known as the ITAP

    Get PDF
    The focus of this research is the ability to manufacture, when using layer base production methods, the medical insert known as ITAP used for prosthetic attachment in a femur. It has been demonstrated using computational modelling that a 3-dimensional build of the ITAP has the lowest stress present when the honeycomb infill pattern’s percentage is set at 100%, with the ITAP being constructed on a horizontal printing bed with the shear forces acting adjacent to the honeycomb structure. The testing has followed the British standard ISO 527-2:2012, which shows a layer base printed tensile test sample, with a print setting of 100% infill and at a side print orientation; this was found to withstand a greater load before failure than any other printed test configuration. These findings have been validated through simulations that analyses the compression, shear and torque forces acting upon an augmented femur, with an imbedded ITAP model
    corecore