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SIMULATION OF DYNAMIC RECRYSTALLIZATION USING 
IRREGULAR CELLULAR AUTOMATA 

 
N. Yazdipour1, A. Dehghan-Manshadi1, C. H. J. Davies2, P.D. Hodgson1 

 
1Centre of Material and Fibre Innovation (CMFI), Deakin University, Geelong, Victoria 3217, Australia 

2School of Physics and Materials Engineering, Monash University, Victoria 3800, Australia 
 
ABSTRACT 
 
Computer simulation is a powerful tool to predict microstructure and its evolution during dynamic recrystallization. 
Cellular Automata (CA), as one of the most efficient methods proposed to simulate recrystallization and grain growth. 
In this work, recrystallization and grain growth phenomena were modelled by using a two dimensional irregular CA 
method. Initial grain size, nuclei density and orientation of each grain were variables which have been used as entering 
data to the CA model. Final grain size, orientation of each grain, dislocation density and stress-strain curve were the 
results which have been resulted to validate the current model. Considering the model assumptions, it is shown that the 
CA can successfully simulate dynamic recrystallization.  
  
Key Words: Dynamic recrystallization, dislocation density, irregular cellular automata 
 
 
1. INTRODUCTION 
 
Hot deformation and its dependent phenomena, such as 
dynamic recrystallization (DRX) and dynamic recovery 
(DRV) have been the subject of many studies [1]. In 
addition to experimental methods, simulation has 
always been used as a quick and accurate approach to 
these studies. However, the simulation of DRX has 
been attracted the most attention during the last decade 
[2, 3]. The ideal homogeneous recrystallization has 
been modelled using the JMAK theory [4] but, in real 
materials, the ideal JMAK behaviour is rarely observed 
because of the heterogeneous nature of 
recrystallization. So, a method was required to model 
recrystallization properly. Cellular automata (CA) 
method gives a time and space dependent description 
of recrystallization. As a numerical approach, CA 
provides a virtual visible evolution of the 
microstructure during recrystallization [3].  
 
In this study, dynamic recovery was modelled by the 
Estrin-Mecking method to predict the three main 
stresses (critical, peak and steady state stresses) on the 
flow curve. Then an approach utilized to relate the 
three stresses to Zener-Hollomon parameter (Z) and the 
results of this approach were compared to the Poliak’s 
approach [5]. In the CA approach, the volume fraction 
of recrystallized material was derived by using a new 
neighbouring method called random CA.  Finally, the 
CA results have been compared to the experiments and 
the flow curve, final microstructure, final grain size and 
DRX volume fraction were obtained from the CA 
model. 
 
 
2. ESTRIN-MECKING METHOD 
 
Dislocation density during hot deformation depends on 
two competing processes: work hardening and 

softening (including dynamic recovery and 
recrystallization). Two approaches have been suggested 
to analyse work hardening: the “Kocks-Mecking” 
(KM) [6] and the “Estrin-Mecking” (EM) [7] methods.  
Both are based on the assumption that the plastic flow 
kinetics are determined by a single parameter [7] of the 
dislocation density (�). In the former method, it was 
assumed that after moving a distance proportional to 
�1/2, dislocations stopped moving. But, the assumption 
that the mean free path of dislocations is proportional 
to 2/1��  was rejected by the Estrin-Mecking method 
[8] when the spacing between obstacles determine the 
mean free path. Estrin and Mecking assumed that the 
distance is a geometrically determined quantity which 
depended on the particle spacing or grain size (d). As 
the material used in this study (304 SS) previously 
followed the EM method[8, 9], this method is used to 
predict DRV.  
 
In the EM approach, the first term of dislocation 
evolution (Equation.1) [10] which expressing the 
athermal storage rate is constant and the change of  

2/1�  with time is zero and the mean free path is 
assumed constant. Therefore, the EM equation follows 
as: 

�
�
�

21 KK
d
d

��                                                        (1) 

where K1 is determined by the constant mean free path: 

bl
K 1

1 �                                                                       (2) 

and K2 is a function for temperature and strain rate, 
� ���,2 TfK �  [8]. The following approach shows the 

relation between the constants and thermomechanical 
parameters. Dislocation density was related to stress 
through �	

 Gb�� 0  in which � is a dislocation 
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interaction term and is constant for most metals, G is 
the shear modulus and b is the Burgers vector [11]. It 
was assumed that at the beginning of deformation, 
when strain is zero, the stress is equal to the initial one. 
While, after passing steady state stress the strain will 
not change any more. Therefore, the boundary 
conditions were defined as: 

�

�

����
���

�


�



ss

00                                                 (3)                           

Therefore, the stress can be expressed with the 
following equation: 

� �� ��

 B
B
A 2exp10 ����                            (4) 

where � �21

2
GbKA 	�  , 

2
2KB � . 

So, by identifying the temperature and strain rate, the 
stress-strain curve which shows dynamic recovery can 
be plotted through Equation 4.  
 
 
3. EXPERIMENTAL PROCEDURES 
 
The material used in this study was AISI 304 austenitic 
stainless steel. Its chemical composition is given in the 
Table 1. To achieve recrystallization, various 
thermomechanical schedules were utilized by hot 
torsion test. The torsion rig and its specifications were 
explained before [12].  
 

Table 1 Chemical composition of the 304 SS used in 
the current study (wt%) 

 
Alloy C Mn Si P S 

0.02 1.6 0.7 0.03 0.01 

304 SS Ni Cr Mo Cu  
8.2 18.5 0.1 0.8  

 
The torsion program is illustrated in Figure 1. Since, 
the model was verified by using two different initial 
grain sizes, the second program was considered to 
achieve another fully recrystallized microstructure with 
different initial grain size (20 μm) by applying an extra 
deformation at 900 oC before the final hot deformation 
test. Also, different strain rates applied on the material 
to consider the effect of strain rate (Figure 2). To study 
the microstructure, common metallographic 
preparation was carried out on the samples and their 
microstructure were analysed by EBSD.  

 
Figure 1. Schematic diagram of hot torsion schedule 

used in this work. 
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Figure 2. Matrix of strain rates used in this work 

 
 
4. EEPERIMENTAL RESULTS 

 

4.1 Flow Curve 

As explained, hot torsion test was performed on 304 
austenite stainless steel samples for different 
temperatures and strain rates (Figures 3.a,b). 
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(b) 

Figure 3. Stress-strain curves from torsion test at (a) 
constant strain rate (0.01S-1) and (b) at constant 

temperature (900 oC). 

At low temperatures (e.g. lower than 800�C), the peak 
stress was eliminated and the flow stress was gradually 
increased. For temperatures close to 700 oC, the peak 
stress was equal to the steady state stress and the latter 
stress could not be distinguished from the former one. 
Therefore, 700 oC was assumed the dynamic recovery 
temperature of this material (Figure 4).  
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Figure 4. Flow curves of 304 stainless steel at constant 

strain rate (0.01 S-1) at different temperatures. 

 

4.2 Work Hardening Curve 

It is assumed that DRX initiates after passing a critical 
stress in the flow stress curve. Therefore, knowing this 
stress is important. There are two methods to measure 
critical stress or the initiation point of recrystallization, 
through either flow curve or microstructure analysis. 
Since, there are many difficulties to use the latter 
method such as obtaining high quality images and large 
quantity of samples, the flow stress analysis is 
preferable. When recrystallization occurs, the flow 
curve and consequently the work hardening curve 
( 
�
� �� )/( dd ) change (Figure 5). This approach 
was first used by Estrin [13] and then continued by 
McQueen and Ryan [14, 15]. In this approach, the 
onset of DRX was defined by the deviation in the work 
hardening curves. It was assumed that the critical stress 
is the  position on the flow curve that  at least % 2 of 

microstructure was recrystallized and makes a visible 
change in the flow curve [16].   

 
Figure 5. Schematic representation of the work 
hardening versus stress graph for dynamically 

recovered (ABD) and dynamically recrystallized 
(ABC) material [13]. 

As shown in Figure 5, the work hardening curve is 
composed of two stages. In the first stage, with 
increasing stress the work hardening rate decreased 
rapidly due to the dynamic recovery. Then, the second 
part initiated where there is an obvious change in the 
slope of the curve. It was assumed that DRX initiated 
at this point. By progressing deformation, the work 
hardening curve crosses the horizontal axis (� =0). The 
point that the curve met the horizontal axis is the 
condition in which the work hardening rate became 
zero, that is, the hardening and softening rate are equal. 
This point (point C in Figure 5) is the peak stress, �p, 
where softening by DRV and DRX is equal to the 
hardening due to the deformation. By following the 
first section of the curve as a straight line (the dashed 
line in Figure 5), the crossing point is the saturation 
stress equal to the steady state or dynamic recovery 
stress (point D in Figure 5).  
 
By following the Poliak approach, the work hardening 
curves have been plotted from the flow curves for 
different temperature and strain rates (Figures 6). The 
critical stresses in different deformation conditions 
which were obtained from the work hardening curves 
by using the Estrin-Mecking approach is located on a 
straight line (Figure 6.a) [5]. 
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(b) 

Figure 6. �-� curve in different thermomechanical 
conditions. (a) at constant strain rates (0.01 S-1) and (b) 

at constant temperature (900 oC). 
 

By following the Poliak approach, critical (�c), peak 
(�p) and steady state (�drvss) stresses were calculated for 
different temperatures and strain rates and are 
summarized in table 2.  

Table 2 Critical, peak and steady state stresses in 
different thermomechanical conditions 

 
��  (s-1) T(oC) �c �p �drvss 

0.001 900 108 115.34 120 
0.01 900 161 162.45 164.4 
0.03 900 181.4 183.5 188.4 
0.1 900 218.1 220.5 227 
1 900 246.6 249.5 255.1 

0.01 750 327 336.5 351.5 
0.01 775 276.8 284 300 
0.01 800 252.4 258 271 
0.01 850 203.7 206.5 215.2 
0.01 950 108.3 116 127 
0.01 1000 75.2 82.6 87.2 
0.01 1100 54.6 56.2 57.6 

 
 
4.3 Critical, Peak and Steady State Stresses   

The critical stress, �cr, is the point after which the DRX 
initiated when dislocation density exceeded the critical 
one and misorientation between neighbouring grains 
exceeded 15o. Also, this is the point that DRV and 
DRX curves started deviating from each other. It is 
shown that critical stress in various thermomechanical 
conditions can be expressed through Zener-Hollomon 
parameter (Equation 5) (Figure 7).  

� � 1206.052.0 Zc �
                                                (5) 

Peak stress is the position on the flow curve in which 
dislocation generation (due to deformation) is equal to 

the dislocation annihilation (due to recovery and 
recrystallization). Therefore, the flow curve will follow 
a flat route (in DRV) and will drop (in DRX). When 
DRX is the dominant mechanism during deformation, 
peak stress can be identified clearly while hardening is 
the main mechanism, the volume fraction of 
recrystallized microstructure will become lower and the 
consequent softening will not be so strong to equalize 
hardening. Therefore, the peak stress would not be 
distinguished easily. Regardless of Z value, it is shown 
that the experimental results have a good agreement 
with the numerical approach (Figure 7) and peak stress 
has been expressed by Zener-Hollomon parameter as 
well. 

� � 13.031.1 Zp �
                                            (6) 

As shown in Figure 3.a (i.e. in the case of 1000 oC) and 
after passing a special strain, there is no change in the 
stress. This means there is equilibrium between 
dislocation generation and annihilation. The point after 
which the stress will not change any longer while strain 
is increasing is defined as steady state stress, �ss, [17]. 
When recrystallization happened, the stress dropped 
evidently and flattened up to the end of the deformation 
and the Z value affected the shape of the flow curve 
and the position of the peak stress. The same event 
occurred for the steady state stress but in this case, a 
fully recrystallized microstructure was obtained while 
in the two previous cases it was impossible to achieve a 
fully recrystallized microstructure. Roucoules 
demonstrated that steady state stress depended only on 
the Z value [18]. 

09.02.7 Zss �
                                                          (7) 

The numerical approach also showed that steady state 
stress is dependent upon Zener-Hollomon (Equation 8).  

� � 1122.05361.0 Zss �
                                                 (8) 

As Roucoules showed, the first constant depended on 
the material properties. Thus, there would be 
reasonable to be different from the constant derived 
form numerical approach but the second constants in 
Equations 7, 8 (the exponents) are fairy close to each 
other.  
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Figure 7. Dependence of critical, peak and steady state 
stresses to the Zener-Hollomon parameter (Qdef.=400 

kJ/mol K) 
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5. “THREE-STRESS” APPROACH 
 
By applying equations 5, 6 and 8, it would be possible 
to predict three stresses (critical, peak and steady state) 
under various thermomechanical conditions (including 
temperature and strain rate). So, by having three 
important points of the flow curve, it would be possible 
to plot the DRV curve (Figure 8.a). When the CA 
model ran, recrystallization initiated and continued up 
to the point where the whole microstructure would be 
fully recrystallized. At this point the stress was equal to 
the steady state value. So, during recrystallization, the 
volume fraction of recrystallized microstructure could 
be calculated in each time increment and the final 
outline have had a “S” shape curve (Figure 8.b) [19]. 
By considering Figures 8.a and b together, the dynamic 
recrystallization curve can be derived (Figure 8.c). 
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(b) 

 
(c) 

Figure 8. Schematic dynamic recovery curve (a), 
typical “S” shape of volume fraction percentage of 

recrystallized microstructure (b), Schematic dynamic 
recrystallization curve (c). 

Then, the EM approach has been used to compare the 
dynamic recovery results obtained from numerical 
approach with the EM method. The Figure 9 illustrates 
the results for different deformation conditions. It is 
obvious that EM approach predicted the DRV curve in 
various thermomechanical conditions properly. By 

comparing the results in different thermomechanical 
conditions, it was shown that in high strain rates the 
numerical approach did not give the accurate results as 
it gave in the lower strain rates (Figure 9.a,b). 
However, the approach gave precise results in different 
temperatures (Figure 9.c,d). This means that the 
approach is much more sensitive to the strain rate than 
to the temperature because of activating different 
deformation mechanisms.   
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(c) 

T= 1100 oC, �� =1 S-1 

T= 1000 oC, �� =1 S-1 

T= 900 oC, �� =0.03 S-1 
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 (d) 
Figure 9. stress-strain curves in different 

thermomechanical conditions to show comparisons 
between EM and numerical approach with DRV 

curves. 
 
 
6. CELLULAR AUTOMATA METHOD 
 
In the CA approach, each domain is divided into cells; 
each of them has a defined state. This state refers to the 
grain to which the cell belongs [19]. CA computes the 
evolving microstructure by updating the state of all 
cells; the new state depends on the state of cells in a 
defined neighbourhood. In conventional CA, an equi-
distant grid is used [3]. While early work used a regular 
cell arrangement, recent developments have allowed 
the use of a random grid cellular automata [20]. CA 
approach gives a time and space dependent description 
of the recrystallization process. As a numerical 
approach, CA provides a virtual visible evolution of the 
microstructure during recrystallization. In many cases, 
local variations have a substantial influence on 
recrystallization and grain growth, and at the same time 
the heterogeneity of these local variations in the 
microstructure makes it difficult to include them in a 
statistical model. Techniques such as CA solve this 
problem simply by spatially resolving the 
microstructure[3]. 
Conventional CA as depicted (Figure 10.a,b),  is 
equidistantly distributed over the microstructure 
volume [2]. This equidistant aspect of the cell 
distribution is the main reason why the link to time and 
space can not be made, obviously because the distances 
between the cells are not equal in all spatial directions 
due to their shape. Consequently, given the same 
conditions for driving force and mobility, the velocity 
of a grain boundary is directionally dependent on its 
relative orientation to the CA grid. A solution to this 
problem is the use of a randomly distributed grid 
Figure 10.c). On average, the distance between 
neighbouring cells in a random grid is independent of 
the spatial direction. Given the statistical isotropy of 
the neighbourhood of a cell, the problem is reduced to 
find a cell updating rule that couples CA algorithm to 
space and time dimensions. An additional advantage of 
a random grid is that, when the material is 
homogeneously deformed, it is still a random grid. 
The notion of the spatial resolution of CA can be 
defined as the number of cells per unit area or unit 

volume. Fixed grid cellular automata have a constant
resolution, which means there are no local changes in 
the cell density. The case for random grid automata is 
completely different, in which the number of cells per 
unit area varies according to the positions in the. The 
local variation of the cells density can affect the 
simulation in two ways. The first problem is that 
computational accuracy changes locally, it means that 
local density of the random grid have to consider 
accuracy. Neighbourhood definition of cells is the most 
important feature of computations. The status of a cell 
is updated and the new cell status depends on the status 
of the neighbouring cells [20]. In an equidistant square 
grid CA, the neighbourhood is typically defined to be 
the four (Von Neumann) or eight (Moore) adjacent 
neighbouring cells while it is completely dependent on 
the neighbourhood radius in random CA (Figure 10.c). 

 
(a) (b) 

 
                                     (c) 

Figure 10. Neighbourhood definitions in conventional 
CA (a,b) and in random grid cellular automata (c) 

In conventional CA all of the cells are updated in each 
time increment. The new status of each cell is 
calculated according to the present status of all cells 
located in its neighbourhood and then all cells receive 
their new status. In the random CA, the status of all 
cells in each time increment should be calculated but 
since during recrystallization, grain boundaries move in 
a fixed direction towards the deformed regions, it is not 
essential to update the status of all cells in each time 
step. The best modification is that cells whose status is 
recrystallized will be removed from the updating 
system. This approach eliminates the cells which have 
“recrystallized” status in previous steps from being 
updated.  
 
 
6.1 Boundary Conditions 
 
There are two approaches to define neighbourhood and 
transition rule for boundary points. One possibility is to 
have different transition rule for these locations, and 
another one is to expand the neighbourhood condition 
for these places. One of the most common solutions 
has been proposed as the periodic boundary condition 
in which one supposes that the lattice is embedded in a 
torus-like shape. In the case of the 2D lattice, this 
means that the right side of the domain is the rest of the 

T= 1000 oC, �� =0.001 S-1 
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left side, and lower side is the rest of the upper side 
(Figure 11). 
 

 
(a) 

 

 
(b) 

Figure 11. Periodic boundary condition, 
mathematically (a), imaginary (b). 

 
In the current model, an initial microstructure which 
was composed of 100 �  100 cells was used to reduce 
the running time and memory usage. The first 
neighbourhood radius was defined by 3, but it could be 
changed as one of the initial entering variables in the 
model. In this model, it was assumed that all of the 
cells were identical; therefore, the critical dislocation 
density was equal to the critical dislocation density of 
each cell. The initial microstructure was generated by 
dispersing some nuclei randomly and letting them to 
grow to obtaining a fully impinged microstructure. In 
the initial microstructure, each grain was distinguished 
by two parameters; firstly, its own digit which was 
given to each cell and represents its orientation. The 
orientation value of each cell came from the average 
number of three digits which represented the colour of 
the cell (Figure 12.a) which was an integer in the range 
1 to 180 degrees and secondly a grain boundary which 
was distinguished as a line between two different 
coloured-cells. 
 

 
(a) 

 
(b) 

Figure 12. A typical initial microstructure in which 
each grain has its own colour (orientation) (a), different 
grains has different colours and different orientations. 

 
It could be possible to consider grain boundaries as one 
or even two layers of cells but the problem emerged 
when one cell changed its state from an 
unrecrystallized cell to the recrystallized one. When a 
new nucleus nucleated, it should be distinguished from 
its surroundings by one (Figure 13.a) or two layers of 
cells (Figure 13.b) which was not reasonable and did 
not have any physical concept.  Therefore, grain 
boundaries were distinguished as the interface between 
two different coloured-cells. 

                       
(a)                                 (b) 

Figure 13. Layers of grain boundary around one 
recrystallized cell. One layer (a) and two layers (b). 

By assuming that “R”,”G” and “B” are representatives 
of red, green and blue, each cell has a specific colour 
and therefore has a specific orientation through the 
following equation: 

� �� � �� ���� 3/BGR                                      (9) 

By referring to the section 4.3, the critical stress was 
calculated depending on thermomechanical conditions. 
Consequently, critical dislocation density (�cr) was 
obtained from; 

crcr Gb �	

 �� 0                                              (10) 

�, G and b have been defined before. Macroscopically, 
recrystallization initiated when dislocation density 
reached a critical amount. But, the microscopic criteria 
had to be satisfied as well before initiating 
recrystallization. Therefore, in the next section, the 
transition rules for recrystallization and dislocation 
migration in microscopic scale are investigated.   
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6.2 Stages of Simulation 
 
To get the results from the CA model, there are 
different stages which should be passed to model 
recrystallization. The stages of simulation are as 
follows:  

1- An initial microstructure was generated and 
entered to the CA code which was included 
the number of grains, the initial average grain 
size and the orientation of each grain (Figure 
12.a).   

2- By commencing deformation, hardening was 
the only deformation mechanism which 
happened before reaching the critical 
dislocation density. Therefore, in each time 
increment a specific amount of dislocation 
should be added to the microstructure. This 
amount (��) was obtained from the �-t curve 
(Figure 14). The figure was obtained by 
knowing that: 

              �	

 Gb�� 0                                         (11) 

              and t���� /��                                          (12) 
 

 
Figure 14. A schematic �-t curve. The amount of 

dislocation which should be dispersed on the domain 
was calculated from the curve in each time increment. 

 
3- The amount of dislocation which increased 

due to deformation and hardening (�� in 
Figure 14) was randomly dispersed on the 
microstructure. As illustrated in Figure 15, the 
dislocations are distributed randomly while 
the grain boundaries were distinguished by 
specific lines and most of the grains have the 
same amount of dislocations (Figure 15.b). It 
was supposed that grain boundaries are the 
energetically barriers for dislocations to 
migrate from each grain to another one. 

                
(a) 

          
(b) 

Figure 15. Dislocations distribution on the 
microstructure randomly from top (a), bottom (b) and 

lateral view (c) respectively. 
 

4-  In the same time increment, dislocations 
migrate along with cells in each grain when 
the transition rules were satisfied (transition 
rules of migration will be explained in the 
following section) to remove any dislocation 
gradient in each grain. The number of 
dislocations which could migrate through cells 
in each grain depended on the dislocation 
number of sender cell and that of receiver cell.  

5- Dislocations accumulated then each cell was 
checked whether it had equal or higher 
dislocation density than the critical one (which 
was calculated from Equation 10).  

6- When the dislocation density reached to the 
critical density, the orientation criterion was 
checked. By passing both criteria, nucleation 
initiated in the satisfied cells. 

If the number of dislocations in each cell reached the 
critical value, the cell would change its state from an 
unrecrystallized cell to the recrystallized one and its 
dislocation density decreased to the reference level.  
 
 
6.3 Migration Steps  
 
According to the literature [21], nucleation of new 
grains take place near grain boundaries. To simulate 
the recrystallization phenomenon properly, the model 
should reflect all physical changes by proper transition 
rules. Transition rules are rules which should be 
applied on the CA space and they should be satisfied 
before any transformation in the state of any cell in the 
CA space [3]. By assuming that dislocations of the cell 
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A will migrate to the cell B (Figure 16), the transition 
rules of migration are summarized as following: 

a) Cell B is in the neighbourhood of cell A 
(according to defined neighbourhood radius) 
(Figure 16) [3]. An important point is that the 
neighbourhood radius should not be taken 
very big because the recrystallizing grains will 
grow quickly and the fully impinged 
recrystallized microstructure will be obtained 
while the flow curve showed that the 
deformation was not completed. 

 
Figure 16. Neighbourhood definition according to the 

neighbourhood radius.  

b) Since, dislocations were able to migrate 
through the cells whose orientations are the 
same, therefore, the receiver cell and the 
sender cell must be located in the same grain 
and have the same orientation (Figure 12.b). 

c) From energy point of view, the total 
dislocations in cell B should be lower than 
that in the cell A. 

 
Dislocations migrate from one cell to the adjacent cells 
which belong to the same grain. However, they cannot 
cross the grain boundaries. This leads to an increase in 
the dislocation density near the grain boundaries and 
triple junctions. It should be noted that triple junctions 
are more preferable locations for recrystallization than 
grain boundaries, which has also been replicated in the 
current model (Figure 17). For instance, three cells 
considered in three different positions, near triple 
junction, grain boundary and in the middle of a grain. 
The neighbourhood radius was assumed constant in the 
three cases. It is obvious that the cell which is located 
near triple junction has smaller qualified neighbouring 
area because one of the criteria for migration was that 
both cells must be in the same grain (condition b in 
6.3). This area would be bigger when a cell is located 
near a grain boundary and the area would be a 
complete circle when a cell is in the middle of a grain. 
Therefore, the cells close to the triple junctions will 
reach to the critical dislocation density sooner and they 
will be the first locations in which recrystallization will 
happen. 
 

 
 Figure 17. Three cells in different positions, into the 

grain, near grain boundary and close to the triple 
junction. 

 
As illustrated in Figure 18, by considering an 
individual cell in the domain, the number of 
dislocations increased near grain boundaries and triple 
junctions when deformation was progressing. So, there 
was a dislocation gradient between the centre and the 
margins of each grain (Figure 18). Because of the same 
reason and considering that triple junctions had higher 
defect energy than grain boundaries, a large number of 
dislocations accumulate at these points. Therefore, it 
would be more preferable for the cells near triple 
junctions to reach the critical dislocation density than 
grain boundaries.  

 
      (a) 

 
        (b) 
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          (c) 

Figure 18. Dislocation density increased in each grain 
during deformation and a dislocation gradient was 

demonstrated in each grain. 
 

By increasing strain, each grain received more 
dislocations gradually and the number of dislocations 
in some cells becomes closer to the critical dislocation 
density (Figure 18.c). Therefore, these cells will be 
ready to recrystallize and will change their state to the 
recrystallized state in the next time steps and loose all 
of their dislocations to the reference level. Also, it was 
obvious that there was a gradient of dislocations in 
each individual grain (Figure 18.b,c). 
 
 
7.  NUCLEATION AND GROWTH IN THE CA 
MODEL 
 
During DRX, various mechanisms are activated and 
generate new strain-free grains which have high angle 
grain boundaries during high temperature deformation 
[22].  Nucleation and grain growth during deformation 
are assumed as the most general characteristics of DRX 
once the dislocation density reach to the critical 
one[23]. Therefore, both nucleation and growth have to 
be considered as important parts of DRX. 
Recrystallisation removes the internal energy which 
was imposed to the material by deformation while the 
structure was still unstable. But the total internal 
energy could be reduced by decreasing the total 
austenite grain boundary area [24]. By giving enough 
time to the material, the subsequent recrystallized 
grains will coarsen by grain growth [25]. It is necessary 
to consider the growth kinetics in the austenite stainless 
steel which was supported by Sellars [26], Colas [27] 
and Anan [28]. So, it was essential to model grain 
growth and its kinetics to verify the microstructure 
evolution during recrystallization. Siciliano [29] 
mentioned that growth happened very fast at early 
stages of growth but it will decrease when time passed.  
He explained that the rapid grain growth could be due 
to the high driving force which generated through 
dislocations existing in dynamically recovered grains. 
While deformation is proceeding, the dislocation 
density exceeds the critical amount. Therefore, 
nucleation initiates and the satisfied cells will become 
nuclei and they will nucleate near grain boundaries. At 
this point, the cells which become new nuclei will set 
their dislocation level to reference one. But, by 

continuing deformation and growing the recrystallized 
cells in the matrix, they can receive more dislocations. 
Since, the new grain which recrystallized near grain 
boundary should have the same features of both 
neighbouring grains on both sides of boundary; the 
model gives the average orientation of the two 
neighbouring grains to the new recrystallized grain. 
So, growth will continue up to the point in which the 
dislocation density of recrystallized grain is equal to 
the matrix dislocation density and the driving force for 
growth became zero then the growth will cease. While, 
deformation was proceeding, it could be possible for 
the recrystallized grains to receive more dislocations 
and reach to the critical density of dislocation. At this 
point, the boundary of recrystallized grains can be 
potential nucleation sites for the second stage of 
recrystallization. The important point is that the 
dislocation density which is read from the “�-t” curve 
is a macro-parameter while the dislocation density in 
each cell is a micro-parameter. To relate them to each 
other, a mean dislocation density of cells was used to 
calculate the flow stress of the material. It should be 
mentioned that the mean dislocation density of all 
grains was calculated by the following equation in 
which each cell had a specific fraction of the whole 
dislocation densities: 

��
i

iimean ���                                                      (13) 

where �i and vi were the dislocation density and the 
volume fraction of the grain i, respectively. By 
referring to Figure 14.b, the misorientation between 
two cells in the same grain was equal to zero while it 
had non-zero value between two cells from two 
different grains which can be calculated by; 

�=	1- 	2                                                                 (14) 

So, the grain boundary energy, 
, can be calculated 
from the Read–Shockley Equation [30]; 

��
�

�
��
�

 
��

mm
m �

�
�
�!! ln1                                          (15) 

where � is the misorientation between a grain and its 
neighbouring grain, 
 is the grain boundary energy, 
m 
and �m are the boundary energy and  misorientation 
respectively when the grain boundary becomes a high 
angle boundary (in this case, it was supposed higher 
than 15o). When the growth velocity of a grain 
calculated, the growth distance in each time increment 
would be calculated as well. The transformation 
probability for the site (x,y) which lies in the allowable 
growth region is determined using cellular automaton 
method, and the equiaxed growth of  grains can be 
simulated. By calculating the misorientation, it would 
be possible to calculate the critical dislocation density 
at the micro-level by the following equation [30]: 

3/1

23
20

�
�
�

�
�
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"
�!�

blMc
�

                                               (16) 
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where b is Burger’s vector, M is grain boundary 
mobility, "  is dislocation line energy which is equal to 

2CGb  (C is a constant equal to 0.5 and G is shear 
modulus), and l is the dislocation mean-free path which 
can be taken as the subgrain size. This was calculated 
by using the following equation: 

1K
Gb

l
�



                                                                 (17) 

where K1 is a constant close to 10 for metals. 
 is also 
calculated from Equation 15 and grain boundary 
mobility, M, will be calculated from: 

KT
bDM b�

�                                                              (18) 

where  

�
�
�

�
�
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�
RT
QDD b

obb exp��                                        (19) 

Here � is the characteristic grain boundary thickness, 
Db is the boundary self-diffusion coefficient, Qb is the 
boundary diffusion activation energy and K is 
Boltzmann’s constant [11]. 
By exceeding the critical dislocation density in both 
micro and macro-levels, the satisfied nuclei started 
growing and growth will initiate in the coming time 
steps. By assuming that the recrystallised grains were 
spherical, the driving force, F, could be measured from 
the energy changes associated with the growth of the 
dynamically recrystallized grains. When a nucleus by 
the radius of “r” grew up by dr, the energy change is 
included two terms. The first term was related to the 
new surface which is created due to growth and the 
second term is the volume which is consumed from the 
neighbouring grains. Therefore, the driving force is a 
competition between surface and volume energetically 
which could be expressed as following [30]: 

.. volsurf dVdVdV ��                                             (20) 

The change of surface energy was due to the growth of 
grains and could be defined as: 

� � drrrddVsurf !�!� 84 2 ��                                (21) 

The change of volume energy is due to the consuming 
the previous grains and can be expressed as: 

� � � � � �drrrdrrdV mdmdvol ��"�����" ���
�
�

�
�
 ����� 233 4

3
4

3
4

                                                                                  (22) 

The driving force was defined as following: 

� � !���"� rr
dr
dVF dm 84 2 �����                    (23) 

where �m and �d were dislocation densities of the 
matrix around the growing grain depending on the 
neighbourhood definition and that of the dynamically 
recrystallised grain. According to the Equation 23 
growth will continue up to the point that F becomes 

zero after which growth stopped. The constants which 
were used in the CA model are summarized in the table 
3. 
 

Table 3 The values of input data or constants used in 
the CA model. 

Parameter b(m) Qb 
(KJ/mol) obD� (m3/s) 

Value 2.5*10-10 174 1.1*10-13

Parameter 
m (mJ/m2) K(J/ok)  
Value 8.35*10-7 1.38×10�23  

 
 
8. MODEL VERIFICATION 
 
By applying the criteria and transition rules which were 
attempted to duplicate the physical concepts of 
recrystallization to the CA model, the model produced 
a microstructure which is shown in Figure 12. The final 
results should be verified from two points of view, 
mechanical behaviour of material (flow curve) and 
metallurgical view (final microstructure, average final 
grain size and texture).  
According to literature [31], the initial grain size only 
affected the general shape of flow curves very little. 
The influence of initial grain size at different strain 
rates (when temperature is constant) was similar to the 
effect of temperature (when strain rate is constant). In 
the case of coarse-grained material, the delay in the 
initiation of DRX gives more time to recovery to take 
place. Therefore, two different initial microstructures 
with different initial grain sizes were investigated. By 
considering 20 μm and 35 μm as the initial grain sizes 
and the same deformation schedule (constant strain rate 
and temperature), the model should result the same 
final grain size. Two stress-strain curves which were 
related to the two different initial grain sizes have been 
considered (Figure 19). 
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Figure 19. Stress-strain curve for two different initial 
average grain sizes. 

 
After running the CA model, the stress-strain curves 
have been derived from the �-t curve and final 
microstructures have been obtained. Figure 20 shows 
the “dislocation density-time” curve obtained from the 
simulation. It demonstrated that up to the peak stress, 
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simulation and experimental results have an accurate 
agreement. By continuing the deformation, the 
deviation from the experimental results was increased. 
One of the reasons could be the difficulties to reflect 
the grain growth phenomenon on the CA model 
properly.  
 

 
Figure 20. comparison of �-t curves in two different 

initial average grain sizes from experiments and 
simulation. 

 
As it is obvious, after peak stress, there is some under-
estimation which is related to the growth of new 
recrystallized grains but the final microstructures 
obtained from the simulation gave better results in 
comparison with mechanical behaviour. The 
experimental results from torsion test shows that the 
final microstructure with the same thermomechanical 
condition has an average grain size of 10.5 μm (Figure 
21).  
 

 
Figure 21. Microstructure from hot torsion test in 

T=900 0C, =0.01 S-1 

By comparing the results from the simulations, it is 
revealed that when the initial grain size is 35 μm, the 
final grain size is 10.7 μm while it is 10.3 when a 
microstructure with the 20 μm grain size was used 
(Figure 22). 

 
Figure 22. comparison two final microstructure when 
the initial grain size in different. d0=20 μm (a), d0=35 

μm (b). 

 
As dynamic recrystallisation progressed during 
deformation, work hardening occurred within the 
recrystallized grains.  Therefore, the driving force for 
growth reduced and limited the maximum size of the 
recrystallized new grains. When Z value is high 
enough, the final grain size will be determined by the 
work hardening which controlled the growth rate. If the 
work hardening rate is low enough, there will be 
enough driving force for growth and the grains grow 
continuously before the point in which dislocation 
density in the grain reduced the growth rate. Therefore, 
the grain boundaries will be limited when they met 
each other when impinged recrystallized grains face to 
each other. Thus, the final grain size will be controlled 
by the number of other recrystallized grains which 
were competing to consume the initial microstructure 
[32].  
 
 
9. CONCOLUSION 
 
The hot torsion test of a 304 austenitic stainless steel 
was investigated to predict dynamic recrystallization 
curve through Estrin-Mecking theory and through 
numerical approach. Considering no effect of initial 
grain size on the final microstructure, two different 
initial grain sizes were used to validate the CA model. 
The most important results experienced in this study 
can be summarized as following: 
i. The Estirn-Mecking theory can properly represent 

dynamic recovery in the present material. 
ii. The numerical approach shows a good agreement 

with the EM theory. So, by defining 
thermomechanical conditions, the dynamic 
recovery curve can be obtained from the numerical 
approach. 

iii. Peak, critical and steady state stresses (derived 
from the analysis) showed power law functions 
with Zener-Hollomon parameter. 

iv. The microstructure derived from the CA model has 
the same final average grain size as calculated 
from experiments. 

v. The CA model illustrated that final grain size just 
depends on deformation conditions and is 
independent of the initial grain size. 

 

100 μm
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