35 research outputs found
Nucleobindin Co-Localizes and Associates with Cyclooxygenase (COX)-2 in Human Neutrophils
The inducible cyclooxygenase isoform (COX-2) is associated with inflammation, tumorigenesis, as well as with physiological events. Despite efforts deployed in order to understand the biology of this multi-faceted enzyme, much remains to be understood. Nucleobindin (Nuc), a ubiquitous Ca2+-binding protein, possesses a putative COX-binding domain. In this study, we investigated its expression and subcellular localization in human neutrophils, its affinity for COX-2 as well as its possible impact on PGE2 biosynthesis. Complementary subcellular localization approaches including nitrogen cavitation coupled to Percoll fractionation, immunofluorescence, confocal and electron microscopy collectively placed Nuc, COX-2, and all of the main enzymes involved in prostanoid synthesis, in the Golgi apparatus and endoplasmic reticulum of human neutrophils. Immunoprecipitation experiments indicated a high affinity between Nuc and COX-2. Addition of human recombinant (hr) Nuc to purified hrCOX-2 dose-dependently caused an increase in PGE2 biosynthesis in response to arachidonic acid. Co-incubation of Nuc with COX-2-expressing neutrophil lysates also increased their capacity to produce PGE2. Moreover, neutrophil transfection with hrNuc specifically enhanced PGE2 biosynthesis. Together, these results identify a COX-2-associated protein which may have an impact in prostanoid biosynthesis
Pharmacological inhibition of Akt and downstream pathways modulates the expression of COX-2 and mPGES-1 in activated microglia
<p>Abstract</p> <p>Background</p> <p>Microglia are considered a major target for modulating neuroinflammatory and neurodegenerative disease processes. Upon activation, microglia secrete inflammatory mediators that contribute to the resolution or to further enhancement of damage in the central nervous system (CNS). Therefore, it is important to study the intracellular pathways that are involved in the expression of the inflammatory mediators. Particularly, the role of the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) and glycogen synthase kinase-3 (GSK-3) pathways in activated microglia is unclear. Thus, in the present study we investigated the role of Akt and its downstream pathways, GSK-3 and mTOR, in lipopolysaccharide (LPS)-activated primary rat microglia by pharmacological inhibition of these pathways in regard to the expression of cyclooxygenase (COX)-2 and microsomal prostaglandin E synthase-1 (mPGES-1) and to the production of prostaglandin (PG) E<sub>2 </sub>and PGD<sub>2</sub>.</p> <p>Findings</p> <p>We show that inhibition of Akt by the Akt inhibitor X enhanced the production of PGE<sub>2 </sub>and PGD<sub>2 </sub>without affecting the expression of COX-2, mPGES-1, mPGES-2 and cytosolic prostaglandin E synthase (cPGES). Moreover, inhibition of GSK-3 reduced the expression of both COX-2 and mPGES-1. In contrast, the mTOR inhibitor rapamycin enhanced both COX-2 and mPGES-1 immunoreactivity and the release of PGE<sub>2 </sub>and PGD<sub>2</sub>. Interestingly, NVP-BEZ235, a dual PI3K/mTOR inhibitor, enhanced COX-2 and reduced mPGES-1 immunoreactivity, albeit PGE<sub>2 </sub>and PGD<sub>2 </sub>levels were enhanced in LPS-stimulated microglia. However, this compound also increased PGE<sub>2 </sub>in non-stimulated microglia.</p> <p>Conclusion</p> <p>Taken together, we demonstrate that blockade of mTOR and/or PI3K/Akt enhances prostanoid production and that PI3K/Akt, GSK-3 and mTOR differently regulate the expression of mPGES-1 and COX-2 in activated primary microglia. Therefore, these pathways are potential targets for the development of novel strategies to modulate neuroinflammation.</p
Fuel irradiation devices Test of sealed passages with optical fibres in support of the development of innovative instrumentation
International audienceWithin the scope of developing the experimental reactor means for the Jules Horowitz reactor (JHR) in France, certain R&D actions are currently focusing on technological building bricks. The action covered in this paper concerns fuel irradiation devices, in particular the fabrication and testing of leak tight feedthroughs equipped with optical fibres under thermal hydraulic conditions (155 bar and 100°C) that are representative of those in certain irradiation devices heads operating under pressurised water reactor (PWR) conditions. The test performed with these leak tight feedthroughs lasted five days and was representative of certain experimental power ramp-up scenarios on a fuel rod (conditioning, ramp-up, high power plateau for 24 hours, and cooling). The results of this test make it possible to validate the recommended technology. It therefore seems feasible to implement innovative instrumentation equipped with optical fibres in irradiation devices operating under similar experimental conditions. Following a general description of the project and the JHR facility currently under construction at the CEA Cadarache centre in France, this paper describes the relevant fuel irradiation devices. We have focused on the leak tight feedthroughs going through the device head, in particular those containing the optical fibres. We discuss the tests performed, their results and several future prospects with respect to the utilisation of optical fibres as a means to support the development of innovative instrumentation. IGORR-RRFM conference 24-28 th March 2019, Jordan 2-1