228 research outputs found

    Variation in rates of early development in Haliotis asinina generate competent larvae of different ages

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Inter-specific comparisons of metazoan developmental mechanisms have provided a wealth of data concerning the evolution of body form and the generation of morphological novelty. Conversely, studies of intra-specific variation in developmental programs are far fewer. Variation in the rate of development may be an advantage to the many marine invertebrates that posses a biphasic life cycle, where fitness commonly requires the recruitment of planktonically dispersing larvae to patchily distributed benthic environments.</p> <p>Results</p> <p>We have characterised differences in the rate of development between individuals originating from a synchronised fertilisation event in the tropical abalone <it>Haliotis asinina</it>, a broadcast spawning lecithotrophic vetigastropod. We observed significant differences in the time taken to complete early developmental events (time taken to complete third cleavage and to hatch from the vitelline envelope), mid-larval events (variation in larval shell development) and late larval events (the acquisition of competence to respond to a metamorphosis inducing cue). We also provide estimates of the variation in maternally provided energy reserves that suggest maternal provisioning is unlikely to explain the majority of the variation in developmental rate we report here.</p> <p>Conclusions</p> <p>Significant differences in the rates of development exist both within and between cohorts of synchronously fertilised <it>H. asinina </it>gametes. These differences can be detected shortly after fertilisation and generate larvae of increasingly divergent development states. We discuss the significance of our results within an ecological context, the adaptive significance of mechanisms that might maintain this variation, and potential sources of this variation.</p

    The origin of the ADAR gene family and animal RNA editing

    Get PDF

    Dynamic expression of ancient and novel molluscan shell genes during ecological transitions

    Get PDF
    Background: The Mollusca constitute one of the most morphologically and ecologically diverse metazoan phyla, occupying a wide range of marine, terrestrial and freshwater habitats. The evolutionary success of the molluscs can in part be attributed to the evolvability of the external shell. Typically, the shell first forms during embryonic and larval development, changing dramatically in shape, colour and mineralogical composition as development and maturation proceeds. Major developmental transitions in shell morphology often correlate with ecological transitions (e.g. from a planktonic to benthic existence at metamorphosis). While the genes involved in molluscan biomineralisation are beginning to be identified, there is little understanding of how these are developmentally regulated, or if the same genes are operational at different stages of the mollusc's life. Results: Here we relate the developmental expression of nine genes in the tissue responsible for shell production – the mantle – to ecological transitions that occur during the lifetime of the tropical abalone Haliotis asinina (Vetigastropoda). Four of these genes encode evolutionarily ancient proteins, while four others encode secreted proteins with little or no identity to known proteins. Another gene has been previously described from the mantle of another haliotid vetigastropod. All nine genes display dynamic spatial and temporal expression profiles within the larval shell field and juvenile mantle. Conclusion: These expression data reflect the regulatory complexity that underlies molluscan shell construction from larval stages to adulthood, and serves to highlight the different ecological demands placed on each stage. The use of both ancient and novel genes in all stages of shell construction also suggest that a core set of shell-making genes was provided by a shared metazoan ancestor, which has been elaborated upon to produce the range of molluscan shell types we see today

    The evolution of Runx genes II. The C-terminal Groucho recruitment motif is present in both eumetazoans and homoscleromorphs but absent in a haplosclerid demosponge

    Get PDF
    Background. The Runt DNA binding domain (Runx) defines a metazoan family of sequence-specific transcription factors with essential roles in animal ontogeny and stem cell based development. Depending on cis-regulatory context, Runx proteins mediate either transcriptional activation or repression. In many contexts Runx-mediated repression is carried out by Groucho/TLE, recruited to the transcriptional complex via a C-terminal WRPY sequence motif that is found encoded in all heretofore known Runx genes. Findings. Full-length Runx genes were identified in the recently sequenced genomes of phylogenetically diverse metazoans, including placozoans and sponges, the most basally branching members of that clade. No sequences with significant similarity to the Runt domain were found in the genome of the choanoflagellate Monosiga brevicollis, confirming that Runx is a metazoan apomorphy. A contig assembled from genomic sequences of the haplosclerid demosponge Amphimedon queenslandica was used to construct a model of the single Runx gene from that species, AmqRunx, the veracity of which was confirmed by expressed sequences. The encoded sequence of the Runx protein OscRunx from the homoscleromorph sponge Oscarella carmella was also obtained from assembled ESTs. Remarkably, a syntenic linkage between Runx and Supt3h, previously reported in vertebrates, is conserved in A. queenslandica. Whereas OscRunx encodes a C-terminal Groucho-recruitment motif, AmqRunx does not, although a Groucho homologue is found in the A. queenslandica genome. Conclusion. Our results are consistent with the hypothesis that sponges are paraphyletic, and suggest that Runx-WRPY mediated recruitment of Groucho to cis-regulatory sequences originated in the ancestors of eumetazoans following their divergence from demosponges

    Pearl sac gene expression profiles associated with pearl attributes in the silver-lip pearl oyster, Pinctada maxima

    Get PDF
    Funding: This research was funded by an Australian Research Council Linkage Grants LP0990280 and LP130100086 to BD and PM.Pearls are highly prized biomineralized gemstones produced by molluscs. The appearance and mineralogy of cultured pearls can vary markedly, greatly affecting their commercial value. To begin to understand the role of pearl sacs-organs that form in host oysters from explanted mantle tissues that surround and synthesize pearls-we undertook transcriptomic analyses to identify genes that are differentially expressed in sacs producing pearls with different surface and structural characteristics. Our results indicate that gene expression profiles correlate with different pearl defects, suggesting that gene regulation in the pearl sac contributes to pearl appearance and quality. For instance, pearl sacs that produced pearls with surface non-lustrous calcification significantly down-regulate genes associated with cilia and microtubule function compared to pearl sacs giving rise to lustrous pearls. These results suggest that gene expression profiling can advance our understanding of processes that control biomineralization, which may be of direct value to the pearl industry, particularly in relation to defects that result in low value pearls.Peer reviewe

    Evolution of the tyrosinase gene family in bivalve molluscs: independent expansion of the mantle gene repertoire

    Get PDF
    Tyrosinase is a copper-containing enzyme that mediates the hydroxylation of monophenols and oxidation of o-diphenols to o-quinones. This enzyme is involved in a variety of biological processes, including pigment production, innate immunity, wound healing, and exoskeleton fabrication and hardening (e.g. arthropod skeleton and mollusc shell). Here we show that the tyrosinase gene family has undergone large expansions in pearl oysters (Pinctada spp.) and the Pacific oyster (Crassostrea gigas). Phylogenetic analysis reveals that pearl oysters possess at least four tyrosinase genes that are not present in the Pacific oyster. Likewise, C. gigas has multiple tyrosinase genes that are not orthologous to the Pinctada genes, indicating that this gene family has expanded independently in these bivalve lineages. Many of the tyrosinase genes in these bivalves are expressed at relatively high levels in the mantle, the organ responsible for shell fabrication. Detailed comparisons of tyrosinase gene expression in different regions of the mantle in two closely related pearl oysters, P. maxima and P. margaritifera, reveals that recently evolved orthologous tyrosinase genes can have markedly different expression profiles. The expansion of tyrosinase genes in these oysters and their co-option into the mantle's gene regulatory network is consistent with mollusc shell formation being underpinned by a rapidly evolving transcriptome

    Long non-coding regulatory RNAs in sponges and insights into the origin of animal multicellularity

    Get PDF
    How animals evolved from a single-celled ancestor over 700 million years ago is poorly understood. Recent transcriptomic and chromatin analyses in the sponge Amphimedon queenslandica, a morphologically-simple representative of one of the oldest animal phyletic lineages, have shed light on what innovations in the genome and its regulation underlie the emergence of animal multicellularity. Comparisons of the regulatory genome of this sponge with those of more complex bilaterian model species and even simpler unicellular relatives have revealed that fundamental changes in genome regulatory complexity accompanied the evolution of animal multicellularity. Here, we review and discuss the results of these recent investigations by specifically focusing on the contribution of long non-coding RNAs to the evolution of the animal regulatory genome

    How genealogies are affected by the speed of evolution

    Full text link
    In a series of recent works it has been shown that a class of simple models of evolving populations under selection leads to genealogical trees whose statistics are given by the Bolthausen-Sznitman coalescent rather than by the well known Kingman coalescent in the case of neutral evolution. Here we show that when conditioning the genealogies on the speed of evolution, one finds a one parameter family of tree statistics which interpolates between the Bolthausen-Sznitman and Kingman's coalescents. This interpolation can be calculated explicitly for one specific version of the model, the exponential model. Numerical simulations of another version of the model and a phenomenological theory indicate that this one-parameter family of tree statistics could be universal. We compare this tree structure with those appearing in other contexts, in particular in the mean field theory of spin glasses

    Evolutionary origin of gastrulation: insights from sponge development

    Full text link
    BACKGROUND: The evolutionary origin of gastrulation—defined as a morphogenetic event that leads to the establishment of germ layers—remains a vexing question. Central to this debate is the evolutionary relationship between the cell layers of sponges (poriferans) and eumetazoan germ layers. Despite considerable attention, it remains unclear whether sponge cell layers undergo progressive fate determination akin to eumetazoan primary germ layer formation during gastrulation. RESULTS: Here we show by cell-labelling experiments in the demosponge Amphimedon queenslandica that the cell layers established during embryogenesis have no relationship to the cell layers of the juvenile. In addition, juvenile epithelial cells can transdifferentiate into a range of cell types and move between cell layers. Despite the apparent lack of cell layer and fate determination and stability in this sponge, the transcription factor GATA, a highly conserved eumetazoan endomesodermal marker, is expressed consistently in the inner layer of A. queenslandica larvae and juveniles. CONCLUSIONS: Our results are compatible with sponge cell layers not undergoing progressive fate determination and thus not being homologous to eumetazoan germ layers. Nonetheless, the expression of GATA in the sponge inner cell layer suggests a shared ancestry with the eumetazoan endomesoderm, and that the ancestral role of GATA in specifying internalised cells may antedate the origin of germ layers. Together, these results support germ layers and gastrulation evolving early in eumetazoan evolution from pre-existing developmental programs used for the simple patterning of cells in the first multicellular animals
    corecore