1,908 research outputs found

    Ground states for a class of deterministic spin models with glassy behaviour

    Full text link
    We consider the deterministic model with glassy behaviour, recently introduced by Marinari, Parisi and Ritort, with \ha\ H=∑i,j=1NJi,jσiσjH=\sum_{i,j=1}^N J_{i,j}\sigma_i\sigma_j, where JJ is the discrete sine Fourier transform. The ground state found by these authors for NN odd and 2N+12N+1 prime is shown to become asymptotically dege\-ne\-ra\-te when 2N+12N+1 is a product of odd primes, and to disappear for NN even. This last result is based on the explicit construction of a set of eigenvectors for JJ, obtained through its formal identity with the imaginary part of the propagator of the quantized unit symplectic matrix over the 22-torus.Comment: 15 pages, plain LaTe

    On c=1c=1 critical phases in anisotropic spin-1 chains

    Full text link
    Quantum spin-1 chains may develop massless phases in presence of Ising-like and single-ion anisotropies. We have studied c=1 critical phases by means of both analytical techniques, including a mapping of the lattice Hamiltonian onto an O(2) nonlinear sigma model, and a multi-target DMRG algorithm which allows for accurate calculation of excited states. We find excellent quantitative agreement with the theoretical predictions and conclude that a pure Gaussian model, without any orbifold construction, describes correctly the low-energy physics of these critical phases. This combined analysis indicates that the multicritical point at large single-ion anisotropy does not belong to the same universality class as the Takhtajan-Babujian Hamiltonian as claimed in the past. A link between string-order correlation functions and twisting vertex operators, along the c=1 line that ends at this point, is also suggested.Comment: 9 pages, 3 figures, svjour format, submitted to Eur. Phys. J.

    Deterministic spin models with a glassy phase transition

    Full text link
    We consider the infinite-range deterministic spin models with Hamiltonian H=∑i,j=1NJi,jσiσjH=\sum_{i,j=1}^N J_{i,j}\sigma_i\sigma_j, where JJ is the quantization of a chaotic map of the torus. The mean field (TAP) equations are derived by summing the high temperature expansion. They predict a glassy phase transition at the critical temperature T∼0.8T\sim 0.8.Comment: 8 pages, no figures, RevTex forma

    Investigation of the Neutron Form Factors by Inclusive Quasi-Elastic Scattering of Polarized Electrons off Polarized 3^{3}He: A Theoretical Overview

    Full text link
    The theory of quasi-elastic inclusive scattering of polarized leptons off polarized 3^3He is critically reviewed and the origin of different expressions for the polarized nuclear response function appearing in the literature is explained. The sensitivity of the longitudinal asymmetry upon the neutron form factors is thoroughly investigated and the role played by the polarization angle for minimizing the proton contribution is illustrated.Comment: Phys. Rev C in press; 9 figs. (available upon request

    Phase separation and pairing regimes in the one-dimensional asymmetric Hubbard model

    Full text link
    We address some open questions regarding the phase diagram of the one-dimensional Hubbard model with asymmetric hopping coefficients and balanced species. In the attractive regime we present a numerical study of the passage from on-site pairing dominant correlations at small asymmetries to charge-density waves in the region with markedly different hopping coefficients. In the repulsive regime we exploit two analytical treatments in the strong- and weak-coupling regimes in order to locate the onset of phase separation at small and large asymmetries respectively.Comment: 13 pages, RevTeX 4, 12 eps figures, some additional refs. with respect to v1 and citation errors fixe

    Ground-state energies, densities and momentum distributions in closed-shell nuclei calculated within a cluster expansion approach and realistic interactions

    Full text link
    A linked cluster expansion suitable for the treatment of ground-state properties of complex nuclei, as well as of various particle-nucleus scattering processes, has been used to calculate the ground-state energy, density and momentum distribution of 16-O and 40-Ca using realistic interactions. First of all, a benchmark calculation for the ground-state energy has been performed using the truncated V8' potential, and consisting in the comparison of our results with the ones obtained by the Fermi Hypernetted Chain approach, adopting in both cases the same mean field wave functions and the same correlation functions. The results exhibited a nice agreement between the two methods. Therefore, the approach has been applied to the calculation of the ground-state energy, density and momentum distributions of 16-O and 40-Ca using the full V8' potential, finding again a satisfactory agreement with the results based on more advanced approaches where higher order cluster contributions are taken into account. It appears therefore that the cluster expansion approach can provide accurate approximations for various diagonal and non diagonal density matrices, so that it could be used for a reliable evaluation of nuclear effects in various medium and high energy scattering processes off nuclear targets. The developed approach can be readily generalized to the treatment of Glauber type final state interaction effects in inclusive, semi-inclusive and exclusive processes off nuclei at medium and high energies.Comment: 42 pages, 18 figure

    Can neutron electromagnetic form factors be obtained by polarized inclusive electron scattering off polarized three-nucleon bound states?

    Full text link
    The investigation of the electromagnetic inclusive responses of polarized 3^{3}He within the plane wave impulse approximation is briefly reported. A particular emphasys is put on the extraction, from the inclusive responses at the quasielastic peak, of the neutron form factors from feasible experiments.Comment: 6 pages, Latex, 4 Postscript figures. Presented to XVth Conference on "Few-body problems in Physics", Groningen July 1997.To appear in Nucl. Phys.

    Rapidly-converging methods for the location of quantum critical points from finite-size data

    Full text link
    We analyze in detail, beyond the usual scaling hypothesis, the finite-size convergence of static quantities toward the thermodynamic limit. In this way we are able to obtain sequences of pseudo-critical points which display a faster convergence rate as compared to currently used methods. The approaches are valid in any spatial dimension and for any value of the dynamic exponent. We demonstrate the effectiveness of our methods both analytically on the basis of the one dimensional XY model, and numerically considering c = 1 transitions occurring in non integrable spin models. In particular, we show that these general methods are able to locate precisely the onset of the Berezinskii-Kosterlitz-Thouless transition making only use of ground-state properties on relatively small systems.Comment: 9 pages, 2 EPS figures, RevTeX style. Updated to published versio

    Relative entropy via non-sequential recursive pair substitutions

    Full text link
    The entropy of an ergodic source is the limit of properly rescaled 1-block entropies of sources obtained applying successive non-sequential recursive pairs substitutions (see P. Grassberger 2002 ArXiv:physics/0207023 and D. Benedetto, E. Caglioti and D. Gabrielli 2006 Jour. Stat. Mech. Theo. Exp. 09 doi:10.1088/1742.-5468/2006/09/P09011). In this paper we prove that the cross entropy and the Kullback-Leibler divergence can be obtained in a similar way.Comment: 13 pages , 2 figure

    Escape orbits and Ergodicity in Infinite Step Billiards

    Full text link
    In a previous paper we defined a class of non-compact polygonal billiards, the infinite step billiards: to a given decreasing sequence of non-negative numbers {pn\{p_{n}, there corresponds a table \Bi := \bigcup_{n\in\N} [n,n+1] \times [0,p_{n}]. In this article, first we generalize the main result of the previous paper to a wider class of examples. That is, a.s. there is a unique escape orbit which belongs to the alpha and omega-limit of every other trajectory. Then, following a recent work of Troubetzkoy, we prove that generically these systems are ergodic for almost all initial velocities, and the entropy with respect to a wide class of ergodic measures is zero.Comment: 27 pages, 8 figure
    • …
    corecore