46 research outputs found

    The Blood of Healthy Individuals Exhibits CD8 T Cells with a Highly Altered TCR Vb Repertoire but with an Unmodified Phenotype

    Get PDF
    CD8 T cell clonal expansions (TCE) have been observed in elderly, healthy individuals as well in old mice, and have been associated with the ageing process. Both chronic latent and non-persistent viral infections have been proposed to drive the development of distinct non-functional and functional TCE respectively. Biases in TCR Vβ repertoire diversity are also recurrently observed in patients that have undergone strong immune challenge, and are preferentially observed in the CD8 compartment. Healthy adults can also exhibit CD8 T cells with strong alterations of their CDR3 length distribution. Surprisingly, no specific investigations have been conducted to analyze the CD8 T cell repertoire in normal adults, to determine if such alterations in TCR Vβ repertoire share the features of TCE. In this study, we characterized the phenotype and function of the CD8 population in healthy individuals of 25–52 years of age. All but one of the EBV-positive HLA-B8 healthy volunteers that were studied were CMV-negative. Using a specific unsupervised statistical method, we identified Vβ families with altered CDR3 length distribution and increased TCR Vβ/HPRT transcript ratios in all individuals tested. The increase in TCR Vβ/HPRT transcript ratio was more frequently associated with an increase in the percentage of the corresponding Vβ+ T cells than with an absence of modification of their percentage. However, in contrast with the previously described TCE, these CD8+ T cells were not preferentially found in the memory CD8 subset, they exhibited normal effector functions (cytokine secretion and cytotoxic molecule expression) and they were not reactive to a pool of EBV/CMV/Flu virus peptides. Taken together, the combined analysis of transcripts and proteins of the TCR Vβ repertoire led to the identification of different types of CD8+ T cell clone expansion or contraction in healthy individuals, a situation that appears more complex than previously described in aged individuals

    Induction of Foxp3-Expressing Regulatory T-Cells by Donor Blood Transfusion Is Required for Tolerance to Rat Liver Allografts

    Get PDF
    BACKGROUND:Donor-specific blood transfusion (DST) prior to solid organ transplantation has been shown to induce long-term allograft survival in the absence of immunosuppressive therapy. Although the mechanisms underlying DST-induced allograft tolerance are not well defined, there is evidence to suggest DST induces one or more populations of antigen-specific regulatory cells that suppress allograft rejection. However, neither the identity nor the regulatory properties of these tolerogenic lymphocytes have been reported. Therefore, the objective of this study was to define the kinetics, phenotype and suppressive function of the regulatory cells induced by DST alone or in combination with liver allograft transplantation (LTx). METHODOLOGY/PRINCIPAL FINDINGS:Tolerance to Dark Agouti (DA; RT1(a)) rat liver allografts was induced by injection (iv) of 1 ml of heparinized DA blood to naïve Lewis (LEW; RT1(l)) rats once per week for 4 weeks prior to LTx. We found that preoperative DST alone generates CD4(+) T-cells that when transferred into naïve LEW recipients are capable of suppressing DA liver allograft rejection and promoting long-term survival of the graft and recipient. However, these DST-generated T-cells did not express the regulatory T-cell (Treg) transcription factor Foxp3 nor did they suppress alloantigen (DA)-induced activation of LEW T-cells in vitro suggesting that these lymphocytes are not fully functional regulatory Tregs. We did observe that DST+LTx (but not DST alone) induced the time-dependent formation of CD4(+)Foxp3(+) Tregs that potently suppressed alloantigen-induced activation of naïve LEW T-cells in vitro and liver allograft rejection in vivo. Finally, we present data demonstrating that virtually all of the Foxp3-expressing Tregs reside within the CD4(+)CD45RC(-) population whereas in which approximately 50% of these Tregs express CD25. CONCLUSIONS/SIGNIFICANCE:We conclude that preoperative DST, in the absence of liver allograft transplantation, induces the formation of CD4(+) T-cells that are not themselves Tregs but give rise directly or indirectly to fully functional CD4(+)CD45RC(-)Foxp3(+)Tregs when transferred into MHC mismatched recipients prior to LTx. These Tregs possess potent suppressive activity and are capable of suppressing acute liver allograft rejection. Understanding the mechanisms by which preoperative DST induces the generation of tolerogenic Tregs in the presence of alloantigens may lead to the development of novel antigen-specific immunological therapies for the treatment of solid organ rejection

    Suppression of Allograft Rejection by Tim-1-Fc through Cross-Linking with a Novel Tim-1 Binding Partner on T Cells

    Get PDF
    Engagement of T-cell immunoglobulin mucin (Tim)-1 on T cells with its ligand, Tim-4, on antigen presenting cells delivers positive costimulatory signals to T cells. However, the molecular mechanisms for Tim-1-mediated regulation of T-cell activation and differentiation are relatively poorly understood. Here we investigated the role of Tim-1 in T-cell responses and allograft rejection using recombinant human Tim-1 extracellular domain and IgG1-Fc fusion proteins (Tim-1-Fc). In vitro assays confirmed that Tim-1-Fc selectively binds to CD4+ effector T cells, but not dendritic cells or natural regulatory T cells (nTregs). Tim-1-Fc was able to inhibit the responses of purified CD4+ T cells that do not express Tim-4 to stimulation by anti-CD3/CD28 mAbs, and this inhibition was associated with reduced AKT and ERK1/2 phosphorylation, but it had no influence on nTregs. Moreover, Tim-1-Fc inhibited the proliferation of CD4+ T cells stimulated by allogeneic dendritic cells. Treatment of recipient mice with Tim-1-Fc significantly prolonged cardiac allograft survival in a fully MHC-mismatched strain combination, which was associated with impaired Th1 response and preserved Th2 and nTregs function. Importantly, the frequency of Foxp3+ cells in splenic CD4+ T cells was increased, thus shifting the balance toward regulators, even though Tim-1-Fc did not induce Foxp3 expression in CD4+CD25− T cells directly. These results indicate that Tim-1-Fc can inhibit T-cell responses through an unknown Tim-1 binding partner on T cells, and it is a promising immunosuppressive agent for preventing allograft rejection

    Regulatory T Cells in Kidney Transplantation: New Directions?

    No full text
    International audienceThe contribution of regulatory T cells in the maintenance of kidney graft survival is of major interest. Although many experimental models suggest a role in the induction of graft tolerance, reproducing these findings in clinic is less clear. While modulation of the regulatory T cell response is a promising therapeutic concept in transplantation, a better understanding of function, phenotype and biology is needed to be able to optimally exploit these cells in order to induce graft tolerance. With this in mind, we review here the current understanding of the phenotypic-functional delineation of Tregs and how Tregs can contribute to graft survival. We highlight their potential role in long-term graft survival and kidney operational tolerance. We also discuss the mechanisms needed for the molecular development of regulatory T cells: A combination of FOXP3 molecular partners, epigenetic, metabolic, and posttranslational modifications are necessary to generate well-functioning regulatory T cells and maintain their core identify. We discuss how an improved understanding of these mechanisms will permit the identification of new potent therapeutic strategies to improve kidney graft survival

    Analysis of Factors Influencing Long-Term Survival after Surgical Resection for Oesophageal Squamous Cell Carcinoma

    Full text link
    OBJECTIVE: We evaluated prognostic factors in 34 patients discharged from hospital after surgical resection for oesophageal squamous cell carcinoma. MATERIAL AND METHODS: There were 22 males and 12 females; mean age was 59.3 years (range 42-77 years). Preoperative neoadjuvant treatment consisted in chemotherapy alone in three patients and in combined radiochemotherapy in 14. Digestive continuity was restored with a gastric transplant in 26 patients and a colonic graft in 8. Surgery was curative in 28 patients and palliative in 6. There were three stage I, 14 stage II, 13 stage III, and 4 stage IV diseases. In 19 patients the lymph nodes were invaded. The tumour was well differentiated in 17 patients, moderately in 9, and poorly in 8. RESULTS: Follow-up ranged from 2 to 100 months. Overall median postoperative survival was 21 months. By univariate analysis, factors influencing survival were curative surgery (p = 0.04), stage (p = 0.006), and nodal involvement (p = 0.0003). Nodal involvement was an independent prognostic factor by multivariate analysis (p = 0.0002). Patient age and sex, perioperative transfusion, digestive transplant, tumour local extension, grade of differentiation, and distant metastasis did not influence survival. Also, we did not observe any significant benefit of preoperative or postoperative chemotherapy or radiochemotherapy. CONCLUSIONS: Nodal involvement was the most important prognostic factor influencing survival. Therefore, an earlier diagnosis of oesophageal cancer in a less advanced stage is important to improve survival rates. Our study could not confirm the benefit of neoadjuvant therapy in terms of late survival
    corecore