9 research outputs found

    Viral RNAs are unusually compact.

    Get PDF
    A majority of viruses are composed of long single-stranded genomic RNA molecules encapsulated by protein shells with diameters of just a few tens of nanometers. We examine the extent to which these viral RNAs have evolved to be physically compact molecules to facilitate encapsulation. Measurements of equal-length viral, non-viral, coding and non-coding RNAs show viral RNAs to have among the smallest sizes in solution, i.e., the highest gel-electrophoretic mobilities and the smallest hydrodynamic radii. Using graph-theoretical analyses we demonstrate that their sizes correlate with the compactness of branching patterns in predicted secondary structure ensembles. The density of branching is determined by the number and relative positions of 3-helix junctions, and is highly sensitive to the presence of rare higher-order junctions with 4 or more helices. Compact branching arises from a preponderance of base pairing between nucleotides close to each other in the primary sequence. The density of branching represents a degree of freedom optimized by viral RNA genomes in response to the evolutionary pressure to be packaged reliably. Several families of viruses are analyzed to delineate the effects of capsid geometry, size and charge stabilization on the selective pressure for RNA compactness. Compact branching has important implications for RNA folding and viral assembly

    Quality control of MATa1 splicing and exon skipping by nuclear RNA degradation

    Get PDF
    The MATa1 gene encodes a transcriptional repressor that is an important modulator of sex-specific gene expression in Saccharomyces cerevisiae. MATa1 contains two small introns, both of which need to be accurately excised for proper expression of a functional MATa1 product and to avoid production of aberrant forms of the repressor. Here, we show that unspliced and partially spliced forms of the MATa1 mRNA are degraded by the nuclear exonuclease Rat1p, the nuclear exosome and by the nuclear RNase III endonuclease Rnt1p to prevent undesired expression of non-functional a1 proteins. In addition, we show that mis-spliced forms of MATa1 in which the splicing machinery has skipped exon2 and generated exon1–exon3 products are degraded by the nuclear 5′–3′ exonuclease Rat1p and by the nuclear exosome. This function for Rat1p and the nuclear exosome in the degradation of exon-skipped products is also observed for three other genes that contain two introns (DYN2, SUS1, YOS1), identifying a novel nuclear quality control pathway for aberrantly spliced RNAs that have skipped exons

    Proofreading and spellchecking: A two-tier strategy for pre-mRNA splicing quality control

    No full text
    Multi-tier strategies exist in many biochemical processes to ensure a maximal fidelity of the reactions. In this review, we focus on the two-tier quality control strategy that ensures the quality of the products of the pre-mRNA splicing reactions catalyzed by the spliceosome. The first step in the quality control process relies on kinetic proofreading mechanisms that are internal to the spliceosome and that are performed by ATP-dependent RNA helicases. The second quality control step, spellchecking, involves recognition of unspliced pre-mRNAs or aberrantly spliced mRNAs that have escaped the first proofreading mechanisms, and subsequent degradation of these molecules by degradative enzymes in the nucleus or in the cytoplasm. This two-tier quality control strategy highlights a need for high fidelity and a requirement for degradative activities that eliminate defective molecules. The presence of multiple quality control activities during splicing underscores the importance of this process in the expression of genetic information

    Contributions of Trf4p- and Trf5p-dependent polyadenylation to the processing and degradative functions of the yeast nuclear exosome

    No full text
    The nuclear exosome is involved in a large number of RNA processing and surveillance pathways. RNase III cleavage intermediates destined to be 3′-processed or degraded can be detected when the Rrp6p subunit of the nuclear exosome is absent. Here we show that these processing and degradation intermediates are polyadenylated, and that their polyadenylation is dependent on the activity of Trf4p and Trf5p, two variant poly(A) polymerases. Polyadenylation of cleavage intermediates was inhibited when Trf4p was absent, and reduced to various extents in the absence of Trf5p, suggesting that these two poly(A) polymerases play functionally distinct roles in the polyadenylation of these RNA species. Finally, in the absence of Trf4p, we observed 3′-extended forms of the U4 snRNA that are similar to those observed in the absence of Rrp6p. These results suggest that polyadenylation of RNA processing intermediates plays a functional role in RNA processing pathways and is not limited to RNA surveillance functions

    Higher-order branching in random and viral RNAs.

    No full text
    <p> is shown versus in both plots. Inset B shows 4000-nt random-sequence data (gray squares) with (red squares) and (blue squares) plotted against (see Eqs. 4 & 5). Values of / (gray squares) are consistent with , indicating that most higher-order junctions in random RNAs have . Plot A compares the random sequences with eleven distinct families of viral RNA. Families with more than half their members having are shown with circular symbols.</p

    Gel electrophoretic mobilities of 2117-nt RNAs.

    No full text
    <p>Lanes 1–4 show a viral RNA (B3) and sequences engineered from it, while lanes 5 & 7–10 show yeast-based transcripts. Each lane contains ≈ 1 <i>μ</i>g of RNA, i.e., an ensemble of molecules. B3 & Y2 were mixed prior to running in lane 6. Mobility is measured as the distance from the DNA marker (see Methods), and reported relative to B3.</p

    Viral RNAs Are Unusually Compact

    Get PDF
    A majority of viruses are composed of long single-stranded genomic RNA molecules encapsulated by protein shells with diameters of just a few tens of nanometers. We examine the extent to which these viral RNAs have evolved to be physically compact molecules to facilitate encapsulation. Measurements of equal-length viral, non-viral, coding and non-coding RNAs show viral RNAs to have among the smallest sizes in solution, i.e., the highest gel-electrophoretic mobilities and the smallest hydrodynamic radii. Using graph-theoretical analyses we demonstrate that their sizes correlate with the compactness of branching patterns in predicted secondary structure ensembles. The density of branching is determined by the number and relative positions of 3-helix junctions, and is highly sensitive to the presence of rare higher-order junctions with 4 or more helices. Compact branching arises from a preponderance of base pairing between nucleotides close to each other in the primary sequence. The density of branching represents a degree of freedom optimized by viral RNA genomes in response to the evolutionary pressure to be packaged reliably. Several families of viruses are analyzed to delineate the effects of capsid geometry, size and charge stabilization on the selective pressure for RNA compactness. Compact branching has important implications for RNA folding and viral assembly
    corecore